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NEW BAND TOEPLITZ PRECONDITIONERS FOR
ILL-CONDITIONED SYMMETRIC POSITIVE DEFINITE TOEPLITZ
SYSTEMS

D. NOUTSOS* AND P. VASSALOS?

Abstract. It is well known that Preconditioned Conjugate Gradient (PCG) methods are widely
used to solve ill-conditioned Toeplitz linear systems T (f)z = b. In this paper we present a new
preconditioning technique for the solution of symmetric Toeplitz systems generated by nonnegative
functions f with zeros of even order. More specifically; f is divided by the appropriate trigonometric
polynomial g of the smallest degree, with zeros the zeros of f, to eliminate its zeros. Using rational

. . . . 2 . . .
approximation we approximate \/g by i;i and consider P?E as a very satisfactory approximation of f.

We propose the matrix Mn = B *(p)B.(p%g) By (p) as a preconditioner whence a good clustering
of the spectrum of its preconditioned matrix is obtained. We also show that the proposed technique
can be very flexible, a fact that is confirmed by various numerical experiments so that in many cases
1t constitutes a much more efficient strategy than the existing ones.

Key words. low rank correction, Toeplitz matrix, conjugate gradient, rational interpolation
and approximation, preconditioner
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1. Introduction. In this paper we use and analyze band Toeplitz matrices as
preconditioners for the solution of the n x n ill-conditioned symmetric and positive
definite Toeplitz system

(1:1) T.(flz =5

by the Preconditioned Conjugate Gradient (PCG) method, where the matrix T, (f) €
IR™*™ is produced by a real-valued, even, 2m- periodic function defined in the fun-
damental interval [—m,x]. Then, the (j,k) element of T, (f) is given by the Fourier
coefficient of f, i.e

1

Lulflip=Tjk = = fz)e i 0=R=dr 1< k<n,

=T

where i is the imaginary unit.

Toeplitz matrices arise very often in a wide variety of applications, as e.g., in
the numerical solution of differential equations using finite differences, in statistical
problems (linear prediction), in Wiener-Hopf kernels, in Markov chains, in image and
signal processing, e.t.c. (see [8], [3], [19]). The generating function f plays a significant
role in the location and distribution of the eigenvalues of Toeplitz matrix [8], [4] and
in many cases is a priori known. As it is known for the spectrum of T}, (f) there holds
o(Tn(f)) C [essinf f, esssup f).

Superfast direct methods can solve system (1.1) in O(nlog?n) operations, but
their stability properties for ill-conditioned Toeplitz matrices are still unclear; see, for
instance, [3].
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The classical iterative methods such as Jacobi, Gauss—Seidel and SOR are not
effective since the associated spectral radius tends to 1 for large n. The method
which is widely used for the solution of such systems is the PCG method. The factors
that affect the convergence features of this method are the magnitude of the condition
number £2(T,(f)) and the distribution of the eigenvalues. So a good preconditioner
must cluster the eigenvalues of the preconditioned system as much as possible and
make the eigenvalues that might lie outside the cluster have magnitude independent
of n.

If the generating function is continuous and positive then problem (1.1) will not
be ill-conditioned and the condition number can not increase proportionally to n
although it can be very large. In this case system (1.1) can be handled by using a
preconditioner belonging to some Trigonometric matrix algebras (circulant ,7, Hartley,
18], [17], [9]) or by band Toeplitz preconditioners with weakly increasing bandwidth
defined by a polynomial operator S, as was proposed in [16]. Theoretically, the latter
class of preconditioners seems to perform better as n — oo since the number of PCG
iterations tends to 1 while in the former cases this number tends to a constant.

When f has any zeros, then system (1.1) is ill-conditioned and the condition
number k2(7(f)) increases proportionally to n® where « is the largest number of
the multiplicities of the zeros of f [4], [14]. To best handle this case it is necessary
to know the number of the zeros of f. If this number is not even then the most
suitable technique for this situation [13], fails to make the condition number of the
preconditioned matrix independent of its dimension n and the problem is still open.
On the other hand things dramatically change when the number of zeros is even.

In this case, it was R. Chan [4] who first proposed as a preconditioner for system
(1.1) the Toeplitz band matrix By (g) whose generating function g is a trigonometric
polynomial that has the same zeros with the same multiplicities as those of f- Next,
in [5], g was not only considered as having the zeros of f but also its degree was
increased so that it provided additional degrees of freedom to approximate f and to
minimize the relative error ||*L;-‘1||c,o over all trigonometric polynomials g of a fixed
degree [. The generating function g is then computed by the Remez algorithm, which
can be very expensive, from the computational point of view, especially when f has
a large number of zeros.

Recently, Serra [15] has extended this method by proposing alternative tech-
niques to minimize ]|=%-‘2 |co. More specifically, he chose as g, zpg;—; where z;, is the
trigonometric polynomial of minimum degree k that has all the zeros of f with their
multiplicities and g;_ is the trigonometric polynomial of degree | — k which is the
best Chebyshev approximation of f = -z-f; from the space P;_j of all trigonometric
polynomials of degree at most [ — k. In addition, in the same work [15], it was also
proposed another way of constructing g;—; by interpolating f at the [ — k + 1 zeros
of the (I — k + 1)-st degree Chebyshev polynomial of the first kind.

We remark that it has been proved [7], that preconditioners belonging to the
aforementioned matrix algebra, when they can be defined, produce weak clustering,
Le., the eigenvalues of the preconditioned matrix are such that for every e > 0 there
exists a positive 8 so that, except for rare exceptions, O(n®) of the eigenvalues lie in
the interval (0, €).

In this paper we extend the previous methods in order to achieve a better cluster-
ing for the eigenvalues of the preconditioned matrix and propose a way of constructing
a class of preconditioners based on rational approximation or on interpolation to the

positive and continuous function 4/ -z{: with 2z defined previously.
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The outline of the present work is as follows. In Section 2 we recall some useful
issues about the rational approximation, while in Section 3 we introduce the technique
of constructing the new class of preconditioners based on rational approximation to
1/{; and analyze the convergence of the PCG method. In Section 4 we study the
flexibility and possible modifications of our method, analyze its cost per iteration
and compare it with that of previous techniques. Finally, in Section 5, results of
illustrative numerical experiments are exhibited and concluding remarks are made.

2. Preliminaries. In what follows we assume that the generating function f
is defined in [—m, 7], is 2m- periodic, continuous, nonnegative and has zeros of even
order.

We define by z the trigonometric polynomial of minimum degree k containing all
the zeros of f with their multiplicities. Then we define ry, = ﬁ— as the best rational

approximation of f = 1/{; in the uniform norm, i.e.,

If = Timlleo = 22 If = 7lloos
where R(l,m) denotes the set of rational functions r, with p € P}, ¢ € P, and 7 is
irreducible, that is p and ¢ have no zeros in common.

It is known that when f belongs to some special class of functions [10] then the
order of magnitude of the maximum error of an approximation from the space R(l,m)
is better than the corresponding error in the space P(I + m). In general, we hope
that taking advantage of the flexible nature of rational functions this set will be a
stronger tool than its competitor the polynomial one. For example, it is obvious that
polynomials are not suitable for approximating functions having sharp peaks near the
center of their ranges and are slowly varying when |z| increases. Such kind of behavior
can be obtained by continuous functions which are not differentiable at some points.
However, it is easy to overcome this difficulty by using rational functions.

The next theorem establishes the fact that rational approximation of continuous
functions in [—, 7] is always possible and unique.

THEOREM 2.1. Let f in C[—m,n]. Then there exists r* € R(l,m) such that

IF =%l < [lF ~=

forallr e R(I,m) , r # r*.

Proof. See [12], pp. 121,125. O

3. Construction of the Preconditioner. Let f be a 2r—periodic, nonnegative
function belonging to C[—m, 7] with zeros z1, 2, - - -, zs of multiplicities 201,209, -,
2us, Tespectively, and 2u7 + 2us + - - - + 21, = p. First, we define

Zp= H(l — cos(z — ;) )™
i=1

which is the trigonometric polynomial of minimum degree p having all the zeros of
f. By dividing f by z,, all its zeros are eliminated and the ratio {: becomes a real
positive function.

Then, we define the function f = ,/;_,f; and approximate it with the rational

trigonometric function r; ., = a‘l where [, m are the degrees of the numerator and the
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denominator, respectively. Since % is the best rational approximation of ;f— for
m P

2
certain [ and m we are led to the conclusion that q%%- may be a good approximation
of -zf: This means that there exists a small ¢ > 0 such that

f_

<€
zZ, g3

oo

or, equivalently, that there exists a small § > 0 such that

2

2
qu—lH <.
ZpP]

=]

2
The last inequality means that the values of z—'il;y f are clustered in a small region
1

2
near the constant number 1. In matrix analog, this means that taking T, (Z—‘;’g’é) as

a preconditioner matrix for the solution of (1.1), the eigenvalues of 7, * (iq"{;'i) Teif)

are clustered in a small region near 1 and the PCG method will become very fast.
Unfortunately, this matrix is a full Toeplitz matrix, is hard to construct, is costly
to invert and so it is useless as a preconditioner. Instead, we are 2led to the idea
of separating the numerator and the denominator of the ratio %‘3‘— and use as a

preconditioner matrix the product of three band Toeplitz matrices. More specifically,
the preconditioner we propose for the solution of system (1.1) is

(3.1) M, = B;;}.(9)B,;(p*z,) B}, (a), [=2l+p,

where the second index in the matrices represents their halfbandwidth, while the
first one their dimension. The following statements prove the basic assumptions a
preconditioner must satisfy and also describe the spectrum of the preconditioned
matrix M 17T,.

THEOREM 3.1. The matriz M, tis symmetric and positive definite for every n.

Proof. Its symmetry is implied directly from the definition (3.1). On the other
hand, the eigenvalues of B, ;(p®z,) belong to the interval (min p?z,, max pfz,), where
0 = minp?z, < maxp?z, < 2°. Therefore, B,(p?z,) is symmetric and positive def-
inite. Furthermore, ¢,, has no zeros in [—m,#] because it results from the rational
approximation to a function which is strictly positive in [-m,7]. So, Bpm(g) is sym-
metric and invertible. Then, for every z € IR™, = # 0, we have

z¥ Moz = =¥ B}, (9)B,1(p°z,) By (9)x = y7 B (%2, )y > 0,

where y = B} (g)z. Hence M, is symmetric and positive definite. O

Theorem 3.1 suggests that the matrix M, can be taken as a preconditioner matrix.
It then remains to study the convergence rate of the PCG method or, equivalently,
how the eigenvalues of the matrix M7 1T, are distributed. For this, we give without
proof the following Lemma and then we state and prove our main result in Theorem
3:8.

LEMMA 3.1. Suppose A, B € R™*™ agre symmetric matrices such that

A=B+ect,



where c € R™, cTc=1. Ife > 0 then

A1(B) £ A1(A4) € A2(B) <+ < Ma(B) £ Mn(4)
while if € <0, then

A1(4) S Ai(B) < A(4) < -+ < An(4) < M(B)

provided that the eigenvalues are labeled in nondecreasing order of magnitude. In
either case

)\k(A)=/\k(B)+tk€, k=1,2,---,n,
where ty 20, k=1,2,---,n, and > po_,tr = 1.
Proof. See Wilkinson [20], pp. 97-98. O

THEOREM 3.2. Let \{(M;'T,), i = 1(1)n, denote the eigenvalues of M 1T,
and m the degree of the denominator g, of the rational approzimation. Then, at least
n —4m eigenvalues of the preconditioned matriz lie in (Amin, Amax), at most 2m are

greater than hmax and at most 2m are in (0, hmin), where h = ;@% .
Proof. Obviously the matrix

M Tn = Bam(9)B.; (125) Bam (9) T ()
is similar to the matrix
S
2

52) B (672 Bun(@)Tn () Barm (@ B(52)

Then, since Bnm(g) is a band matrix with halfbandwidth m, the matrix

can be written as a sum of a Toeplitz matrix and a low rank correction matrix, i.e.,
(3:3) Bnm(q)Tn(f)Brm(q) = Tn(qu) + A,

where A is a symmetric ‘border’ matrix with nonzero elements only in the first and
last m rows and columns. So rank(A) < 4m is independent of n. Then, from (3.2)
and (3.3) we obtain that

2 E
B (1°2) Bam(0)Tn(f) Brm () B (P%25) = B2 (022,10 (@ F) B (°2,)
(3.4) + B (0*2)AB (p%2).

Since a matrix product does not have rank larger than that of each of the factors
involved, there exist a; > 0, ¢; € R™, i = 1(1)m4, and ; > 0, d; € R™,i = 1(1)m_,
with my +m_ < 4m, such that (3.4) can be written as

m m_
E— E = iaicic? - Zﬁzdzd?
i=1 i=1
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So applying successively m. + m_ times Lemma 3.1 gives
Pmin £ Ai(E) < hmax, m_ <i<n-—my,

and the theorem is proved. 0

It is clear from the previous analysis and statements that contrary to what hap-
pens with other band Toeplitz preconditioners, the one we propose of the ‘premulti-
plier’ matrix Bym(g) , may make some of the eigenvalues lie outside the approximation
interval [Amin, Amax]. We will prove now that the spectral radius of the preconditioned
matrix is bounded by a constant number independent of n. For this, first, we state
and prove the following lemma.

LEmMA 3.2. Let B, be a n x n symmetric and positive definite band Toeplitz
matriz with halfbandwidth s. Then the k X k principal and trailing submatrices of
B! as well as the k x k submatrices consisting from the first k rows and the last
k columns (right upper corner) or from the last k rows and the first k columns (left
lower corner) of B!, are bounded for every fixed k independent of n .

Proof. For principal and trailing submatrices, this property has been proved in
[6] for k = s. We will prove the validity of this property for k = s + 1 and the proof
of every fixed k can be completed by induction. From the foundamental relation

s+1

Zbu(BEl)lj = 815,
=1

where 61, is the Kroneker 4, we obtain successively that

1 . .
(3.5) (BrY)st1,5 = — (815 — Zbll(B«;l)lj s f =ilydy o 58
bl,s+1 iy

Since all the elements in the righthand side of (3.5) are bounded, so are the elements
(BiY)s+1,5, 5 = 1,2,---,5. From the symmetry of B! we obtain that the elements
(BzYis+1, j = 1,2,--+,s, are also bounded. One more application of (3.5) for
j = s+ 1, gives us that the element (B, ?)s+1,5+1 is bounded and the proof for the
principal submatrices is complete. Since, B, ! is a persymmetric matrix the elements
of the trailing matrix are the same as those of the principal one in reverse order. So
the & x k trailing matrix is also bounded.

It remains to prove the validity of the property for the submatrices in the right
upper corner and in the left lower corner of B;!. These matrices are transposes of
each other due to the symmetry of B;!. From the positive definiteness of B! we
have that

(B7 Vi + (B7 Y45 ;
2 2
The elements in the righthand side are the diagonal elements of the k x k principal

and trailing submatrices, respectively, which are bounded and the proof is complete.
a

(B )] <

=1,...,k, j=n—-k+1,...,n

The following theorem proves that the eigenvalues of M =T have an upper bound.

THEOREM 3.3. Under the assumptions of Theorem 3.2 there exists a constant c,
independent of n, such that p (M71Th(f)) < ¢, for every n.

Proof. We begin the proof by using some relations connecting the spectral radii
and the Rayleigh quotients of symmetric matrices. The fact that all the matrices are



positive definite, is also used.

p (M7 To(£)) = p (Bum(@) B (°25) Bam(@) T ()
=p (B;f% (Pzzp)Bnm (@)Tn(f)Bnm (Q)B;‘% (Pzzp))
xTB,;‘% (p2zp)Bnm (Q)Tn(f)Bnm(Q)B;f% (pzzp)a:
= max
2720 Tz
= i z Tal )z ) zTan‘(pzzp)x
0 \ 27 Brm(9)B,i(p?2,) Bam(¢)z 3T B;(0%2,)z
B 2P T (f)x _ zTB_j(p?z,)z
. s (ITan(Pzzp)x 2T Bam(9) B,1(p%2p) Brm (9)2
TLfe | aTB ()
= =20 3T B ;(p?2,)x  =£0 1T BrL(q)B, ;(022,) Buk(q)z
Z'TBnm(Q)an(Pzzp)Bnm(Q)x

=M1II13.X

z#0 5B (e}
zT (Bn’f+2m(q2pzzp) + A) T
= M1 max T )
T#0 25 B_slpte e

T

i Az

< M (Mz -+ max ————)
=0 2T B_;(p?z,)z

= M, (M2 +p (B;;(p?zp)a)) .

z4 B ;(p*zp)x

maxzzo 2 Bk (0 2p)2 = p (B }(p%2,)B,, ;... (a°p*z,) | which are bounded, since
x zT B, ;(p?zp)z i W Zp) By i1 om 87D 2p ’

In (3.6) we have taken M; = max .o —Tm-ﬂér)z— = p (B (p*z,) T, f)) and M, =
# ni P

2,2
the generating functions ;5% and q—pfz—:f- = ¢2, respectively, are bounded functions in

[-m,7]. In (3.6), the matrix product Bnm(q)an(pzzp)Bnm(q) was written as the
band Toeplitz matrix B, ;. , (¢°p®z,), generated by the function ¢p®z,, plus the
low rank correction matrix A.

It is known (2] that the matrix A is given by
A= Bnm(Q)H(Q)H(pQZp)+Bnm(Q)HR(Q)HR(p2zp)+H(Q)H(qp22p)+HR(Q)HR(QP23.0)7

where H(q), H(p?z,) and H(gp®z,) are Hankel matrices produced by the trisonomet-
ric polynomials g, pzzp and gp®z,, respectively, while H denotes the matrix obtained
from H by reversing the order of its rows and columns.

It is obvious that A is a low rank correction matrix that has nonzero elements
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only in the upper left and lower right triangles as this is illustrated below

- ok g o O
0 0
A= * 0 0 0
0 0 0 =
A (] . i
0 e @) ¥ oo K

It is clear that the elements of A are bounded and the size of the triangles depends
only on the bandwidths m and [ and are independent of n.

It remains to prove that p (B;'fl (p2zp)A) is bounded. For this, we write the
matrices in the following block forms

Bl * Bz D
Br:fl (p2zp) = AR . ) A= 0 '
BT x BR o

where By, By are k x k matrices if D has k nonzero anti-diagonals.
Since the only nonzero columns of the matrix B;'El (p?z,)A are its first k and last

k ones, the nonidentically zero eigenvalues of B;fl (p?z,)A will be the eigenvalues of
the matrix

BiD B,DE
BID BEDE

In view of Lemma 3.2 this matrix is bounded and so are its eigenvalues which proves
the present statement. 0

So, the eigenvalues that are greater than Amax, have an upper bound. An open
question remains regarding the eigenvalues that may lie in the interval (0, Api,). How-
ever, strong numerical evidence suggests that in the spectrum of the preconditioned
matrix obtained by our approach (see Figures 5.1, 5.2, 5.3 ), these eigenvalues have
a lower bound independent of n. Moreover, as one can see from Figures (5.1(b)-(d),
5.2(b), 5.3(b)), the out of the main interval eigenvalues appear in pairs. In addition,
the elements of each pair tend to each other as n tends to infinity. In view of this
observation the convergence analysis of the PCG method in [1] assures us that our
method will not be seriously affected and the convergence of it will remain superlinear
which is the optimal cost for this method.

4. Computational analysis and modifications of the method. In this sec-
tion we will try to compare, from the computational point of view, our preconditioner
with the most recent band-Toeplitz preconditioner proposed in [15]. The latter has in
general the best performance from all the previous ones, when the generating function
f is nonnegative and has zeros of even order.

The main computational cost in every PCG iteration is due to the Toeplitz matrix-
vector product T,,(f)z and to the solution of a system with coefficient matrix the
preconditioner itself. The first one is the same for both methods and can be com-
puted by means of Fast Fourier Transform (FFT) in 30(n log2n) operations (ops) in
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a sequential machine or in O(log2n) steps in the parallel PRAM model of computa-
tion, when O(n) processors are used. For the inversion of the preconditioners things
slightly change. If we use band Toeplitz preconditioners then their halfbandwidth
l1 represents the degree I; of the Chebyshev approximation plus the degree p of the
trigonometric polynomial which eliminates the zeros of f. The inversion of such type
of matrices can be achieved using the LDLT factorization method in n(i2 + 8i; + 1)
ops. We mention that this method is preferable from the band Cholesky procedure
because the latter requires the computation of n square roots, which is quite expensive
when n is large.

In the case of our preconditioner the inversion requires two band matrix vector
products of total cost n(4m + 2) ops, where m is the halfbandwidth and coincides
with the degree of the denominator in the rational approximation. In addition, the
inversion of B, ; , as in the previous case, can be performed in n(i3 + 8z + 1) ops,

where fz = p + 2l and [ represents the degree of the numerator of the rational
approximation. So the total cost per iteration for this step of the algorithm of the
PCG method is about

Costy; = n(f% + 8fg +4m + 3).

When n is large, the complexity of the method is strongly dominated by the first

step which requires O(nlog2n) ops and the methods are essentially equivalent in

complexity per iteration. Thus the costs of finding B;i and Bn,mB; }2 B, m, where
1tl »

l; = l3 + m, are comparable.

In case n is not large enough, taking Iy = % — 1 and making some calculations,
we can see that the two preconditioning strategies are approximately equivalent even
when m = pl;.

According to this observation, if we have two candidates of rational approxima-
tions of f with almost the same relative error and degrees (l3,m;), (l2,m2) with
l1 +my = lz + mg, it is preferable, from the computation point of view, to choose
as the generating function for our preconditioner the one which has the larger m and
smaller [.

Finally, we will focus on the calculation of rational approximation of degree (I, m)
of a positive continuous function f. In the recent literature many different strategies
that produce this kind of approximation [11] can be found. Each of them is most
suitable for certain classes of functions but the one which is based on the Remez
algorithm seems to be, in general, quite efficient for a large variety of functions. The
starting point of this category of algorithms is to construct a rational approximation
using rational interpolation and then this rational approximation is used to generate
a better approximation until an alternative set of m + [ + 2 points is achieved. This
procedure consists of adjusting the choice of the interpolation points in such a way as
to ensure that the relative error decreases. In practice this method can fail in some
cases. Usually, problems are caused either from the fact that the extreme values of the
relative error occur more than m + [ + 2 times, or the starting rational interpolation
has zeros in the interval in which this approximation is sought. The first difficulty
is usually overcome by seeking a rational approximation of a different degree or by
designing a more robust algorithm. A trick that often works in the latter case is,
instead of asking again for a rational approximation of a different degree, to start
with an approximation that is valid over a shorter interval and use it as a starting
point for an approximation on a slightly larger interval. Iterative application of this
procedure may enable us to obtain a final approximation in the desired interval.
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TABLE 5.1
Number of iterations for fi(x)

In [Bx Bl[BZ B3] B;* B:[M®' ROT [ Mi! RLI | M1? RL?
169 8 [9 7 [7 6 [& 7 |6 6 |5 5
32 |10 10 |11 8 |9 7 |10 9 |7 7 |6 6
64 |13 12 |11 10 |9 8 [11 11 |9 9 |8 8
12815 15 |12 11 |10 10 |12 13 |11 11 |10 10
256 (16 16 |12 13 |10 10 |13 13 |12 12 |11 11

512 | 16 16 13 13 10 11 13 14 13 13 11 12

For the convergence rate of the approximation method we can not give a the-
oretical result, but the facts that its computational cost is independent of n and
the computations are done only once for a given function make us believe that this
problem does not play an important role in the whole procedure.

4.1. Modifications of the method. The idea of constructing a preconditioner
from a rational approximation of a function can be used in exactly the same way in case
of rational interpolation at the Chebyshev points. The advantage of this modification
is the easiness of its calculation. Nevertheless, it is worth noticing that we can not
assure that this interpolation would not have zeros in the interval of approximation.
Despite this, whenever the preconditioning gives us poor results, this technique may
give, at least for certain classes of f, results similar to the corresponding ones by the
best Chebyshev approximation.

Another modification of this kind of preconditioning would be the following. First,
we approximate the function -L by a rational approximation 2—, where k can be
very large. Then we approxlma.te the function /7 using a polynomlal Chebyshev
approximation g,. Finally, the ratio E;%,: is considered as an approximation of ;% So,

the preconditioner matrix M for the solution of (1.1) would be

(4.1) M, = B;1(d)B, i(pz)B;A(0), [=1+p,

instead of M, in (3.1). After this, all the previous theory developed holds the same.
The main point of this method is to approximate directly }f instead of , /{: and

possibly with a polynomial of higher degree in the denominator. Then considering
that this can take care of every possible abnormalities of f, we approximate the
denominator by a polynomial of lower degree by the Chebyshev technique. We remark
here, that numerical experiments show that this matrix is not in general so good as a
preconditioner compared with M, or with the band-Toeplitz preconditioner obtained
in [15]. This is because we make approximations in two levels. First, we take the
rational approximation and then the Chebyshev approximation of the square root of
the denominator of the first approximation. So, the overall approximation error seems
to become much larger.

5. Numerical examples and concluding remarks. In this section, we present
some numerical examples. The aim of these examples is twofold: i) to show, by numer-
ical evidence, the correctness of our observations regarding the asymptotical spectral
analysis of the preconditioned matrices and ii) to compare the convergence rate of our
preconditioner with that of the band Toeplitz preconditioner proposed in [15]. We
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Fic. 5.1. Spectra of (M2?) ™ Tn(f1) and (Br®) " Tn(f1) for n = 128 and behavior of the
pairs of eigenvalues that lie outside the interval [Amin, Amax] With Amia = 0.98214

TABLE 5.2
Number of iterations for fz(x)

o [BF[BF[Br [Br [Ma' [RR7]
16 |8 [8 |7 |8 [&8 |6
32 |13 [13 |12 |11 |11 |7
64 |19 |18 |15 |13 |12 |9
12824 |19 |17 |14 [12 |11
256 |25 |21 |18 |15 |13 |13
512 (27 |22 |18 |16 |14 |14

use the latter to compare it with ours because it is the most efficient technique for
preconditioning Toeplitz matrices generating by functions with zeros of even order.
Our test functions are the following

2z

L _ .4 _
1) file) ==, 1+ 25z2

i) fa(z) =

22
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32 * *

64 * *
BIT | Ak kb 128 ® 2
256 * x
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512 >
256 ke
128 * %

64 * *

32 * *

(2) (b) The two pairs of extreme eigen-
values

FiG. 5.2. Spectra of (Mpy?) " Tu(f2) and (B2)"'Tn(f2) for n = 128 and behavior of the
pairs of eigenvalues that lie outside the interval [Amin, Amaz)

32 * *

64 * *
Bl WGk k Kk Wk kK * x 128 o«
256 * %
512 b

M-IT * & 20 30

32 * *
64 L
128 L
256
512 -

0.0002 0.0004

0 100 200 300 400 500 0

(a) (b) The two pairs of extreme eigen-
values

Fic. 5.3. Spectra of (Ma2) " Tn(f3) and (B:2) " 'Tn(fs) for n = 256 and behavior of the
pairs of eigenvalues that lie outside the interval [Rmin, hmaz

and

_f (z-3)*z - 1)? 0<z<m,
i) fs(z) = { (x+3)4(zx +1)2 —-rm<z<0.

An effort was made to choose functions of different behaviors which produce ill-
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TABLE 5.3
Number of iterations for fa(z).

In [B2 BB [M2]RT?]
6 (9 [7 [7 |9 |[8
32 |17 |14 |13 |18 |11
64 |34 |28 |22 |21 |14
128 | 65 |48 (36 |21 |20
256 | 111 | 69 |54 |23 |24
512 | 152 |93 |66 |23 |27

conditioned matrices T;,. The Toeplitz matrices produced have Euclidean condition
numbers of order O(n*). In our experiments we solve the system T},(f)z = b where
b is the vector having all its components equal to one. As a starting initial guess of
solution the zero vector is used and as a stopping criterion the validity of % =$ilia]
is considered, where 7y is the residual vector after k iterations. The matrices and the
rational approximations were performed using Mathematica in order to have more
accurate results while all the other computations were performed using Matlab.

In the Tables we report the number of iterations needed until convergence is
achieved in each case, B} denotes the optimal band Toeplitz preconditioner [15] which
is generated by the trigonometric polynomial z,g;, with g; being the best Chebyshev

approximation of {— out of 7, .BA,:EL is the band Toeplitz preconditioner where g is the
il

interpolation polynomial at the Chebyshev points, M%™ denotes our main proposed
preconditioner obtained by the best rational approximation procedure of degree (I, m)
and R4™ denotes the preconditioner that results after applying rational interpolation
of degree ([, m).

In Figures 5.1(a), 5.2(a), 5.3(a), the spectra of the matrices M7 T (f;), i = 1,2, 3,
are illustrated, while in 5.1(b)-(d), 5.2(b), 5.3(b) we focus on the behavior of the pairs
of eigenvalues of the matrix lying outside the interval [Amin, Amax] for different values
of n. The boundness and the convergence in pairs is obvious in all figures. Especially,
we stress the case of figures (5.1) and (5.3) where as we expected from the theory at
most eight eigenvalues would lie outside the interval [Amin, Amax] but in practice, for
the first test function, only three pairs of eigenvalues lie outside this interval, one of
which (the second lower pair) moves very close to the lower bound Ami, = 0.98214
while, for the third test function, only two pairs lie outside this interval. Finally, we
remark that in the case of f3 and for n = 512, the preconditioning by band Toeplitz
B*? “clusters” the eigenvalues of the preconditioned matrix in [0.5,584.3] , B*S in
[0.36, 104.7] while M2 collects the main mass of them in [0.67,1.65] and R12 collects
it in [0.95,14.25].
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Abstract. This paper is concerned with the oscillation of all solutions
of the delay difference equation

Titr =Lt Pt =0 =012 .

where {p.} is a sequence of nonnegative real numbers and k is a pos-
itive integer. Some new oscillation conditions are established. These
conditions concern the case when none of the well-known oscillation

conditions
X .. k*
hﬂsolép ;pﬂ_i >1 and llﬂlc,l.}f z ;pn_i > m

is satisfied.
Key words: Oscillation, nonoscillation, delay difference equation.

AMS Subject Classification (1991): 39A 10.

1. INTRODUCTION

In the last few decades the oscillation theory of delay differential equations has been exten-
sively developed. The oscillation theory of discrete analogues of delay differential equations
has also attracted growing attention in the recent few years. The reader is referred to [I-
5,9,10,15,16,18,20-23]. In particular, the problem of establishing sufficient conditions for the
oscillation of all solutions of the delay difference equation

iy — Bn +ate-p=0, m=012,.. (1.1)

1



where {p,} is a sequence of nonnegative real numbers and % is a positive integer, has been
the subject of many recent investigations. See, for example, [2-7,9,15,16,18,20,21,23] and the
references cited therein. Strong interest in Eq. (1.1) is motivated by the fact that it represents
a discrete analogue of the delay differential equation

2() +p(t)z(t —7) =0, p(t)>0, 7> 0. (1.2)

By a solution of (1.1) we mean a sequence {z,} which is defined for n > —k and which
satisfies (1.1) for n > 0. A solution {z,} of (1.1) is said to be oscillatory if the terms z,, of the
solution are not eventually positive or eventually negative. Otherwise the solution is called
nonoscillatory.

In 1989, Erbe and Zhang [9] and Ladas, Philos and Sficas [16] studied the oscillation of
Eq. (1.1) and proved that all solutions oscillate if

k
limsup > pn; > 1, (1.3)
n—oe
or
im i K 1.4
l1ﬂ1£fpn > m, (1.4)
or
Lt g
lim inf — i > m———. .
N A e o

Observe that (1.5) improves (1.4).

It is interesting to establish sufficient conditions for the oscillation of all solutions of (1.1)
when (1.3) and (1.5) are not satisfied. (For Eq. (1.2), this question has been investigated
by many authors, see, for example, [8,11-14,19] and the references cited therein). In 1993,
Yu, Zhang and Qian [23] and Lalli and Zhang [18] derived some results in this direction.
Unfortunately, the main results in [23,18] are not correct. This is because these results are
based on a false discrete version of Koplatadze-Chanturia Lemma (a counterexample is given
in [5]).

In 1998 Domshlak [4], studied the oscillation of all solutions and the existence of nonoscil-
latory solution of Eq. (1.1) with r -periodic positive coefficients {p,}, pnir = Dn. It is very
important that in the following cases where {r = k}, {r = k+1},{r =2},{k=1,r = 3} and
{k = 1,r = 4} the results obtained are stated in terms of necessary and sufficient conditions,
and their checking is very easy.

Following this historical (and chronological) review we also mention that in the case where

kk
(k+ 1)F+1

1 K k 1 k
= i, T d lim — n—i =
2 1p = T+ DF+ GRe et ;p

=

2



the oscillation of (1.1) has been studied in 1994 by Domshlak [3] and in 1998 by Tang [21]
(see also Tang and Yu [22]). In a case when p, is asymptotically close to one of the periodic
critical states, unimprovable results about oscillation preperties of the equation

Tntl — Tn + PpTn-1 =0

were obtained by Domshlak in 1999 [6] and in 2000 [7].

The aim of this paper is to use some new techniques and improve the methods previously
used to obtain new oscillation conditions for (1.1). Our results are based on two new lemmas
established in section 2.

For convenience, we will assume that inequalities about values of sequences are satisfied
eventually for all large n.

2. SOME NEW LEMMAS

Lemma 2.1. Let the number h > 0 be such that

1.k

Ean_i > h for large n. [2.1)
i=1

Assume that (1.1) has an eventually positive solution {z,}. Then h < k*/(k + 1)¥*! and

In

< [d(R)), (2.2)

lim sup
n—oo Tnp—k

where d(h) is the greater real oot of the algebraic equation

d** —d* + h =0, on the interval [0,1]. (2.3)

Proof. Since (1.5) implies that all solutions of (1.1) oscillate, but (1.1) has an eventually
positive solution, from (2.1), it follows that h < k*/(k+ 1)**! must hold. We now prove (2.2).

To this end, we let

1 k Tn—i
Wn = =

. 2.4
k i=1 Ln—i—1 ( )

and first prove that limsup,_,., wn < d(h). From (1.1), it follows that {z,} is eventually
decreasing and so for large n, we have z,_;_; > z,_; for i = 1,2, ..., k. This implies that

1 5 Tp—i
Wp==) L1s=ts (2.5)
k i=1 Tn—i-1

3



Thus, limsup,,_, ., wn, < d(h) holds for A = 0 because of d(0) = 1. We now consider the case
when 0 < h < k¥/(k + 1)**1. From (1.1), we have

Tpmi=1 = Tn—i + Pp—im1Br—i=i=1; & =1,2u; k. (2.6)

Using the Arithmetic-Geometric Mean Inequality in (2.5), we have
1/k
( a1 ) S dls
Tn—k-1

Tp—i—t—1 = s
R >4y, i=1,2, .k
Trn—i-1

and so

Dividing both sides of (2.6) by z,_;—; and using the last inequality, we have

Tn—i Tn—i—k-1 In—i o %
1= + Pp—i-1 > + tr1{1 Pn—i-1-

Tn—i-1 Tn—i-1  Tp—i-1

Summing both sides of the last inequality from ¢ = 1 to i = k, we obtain

k

Tn—i —k -
Z <k-d an—i—l-

i=1 Tn—i-1 i=1

This, in view of (2.1), leads to

o L h
wy, <1 —dj Ezpn—i—lﬁl—g,;i:dz-
1

i=1

Using the last inequality and repeating the above arguments, we have

h
Wn <1l-— '('i—g' = d3.
Following this iterative procedure, by induction, we have
h
Wy < 1__k = dm+1, m = 1,2,... (27)
dm

Itiseasy toseethat 1 =d; > dy > -+ > dp > dppy1 > 0,m = 1,2, .... Therefore, the limit
limyn—o0 dm = d exists and satisfies (2.3). Since (2.7) holds for all m = 1,2, ..., {d,»} is decreas-
ing and d(h) is the greater real root of the equation (2.3), it follows that lim sup,,_,., w, < d(h)
holds. Finally, using the Arithmetic-Geometric Mean Inequality , we have

. Tn—1 F s 1 2 Tn—i
lim sup < limsup— Y < d(h).

n—oo  \Tn—k-1 n—0o i=1 Tn—i-1



This implies (2.2). The proof is complete.

We describe by the following proposition and remark the number d(h).
Proposition 2.1. For Eq. (2.3), the following statements hold true:

(i) if h=0, then (2.3) has ezactly two different real roots d; = 0 and dy = 1.

(@) if 0 < h < k*/(k + 1)1, then (2.8) has ezactly two different real roots d; and d,
such that

di € (0,k/(k+1)), dse (k/(k+1),1).
(iti) if h=kF/(k+ 1)**, then (2.8) has a unique real root d = k/(k + 1).
The proof of the above Proposition is easy and is omitted.

Remark 2.1. From Proposition 2.1, we see that the number d(h) in Lemma 2.1 satisfies

=1, h=0
d(h) is § € (k/(k+1),1), 0<h<kF/(k+1)!
=k/(k+1), h=k*/(k+ 1)**.
Lemma 2.2. Let the number M > 0 be such that
k
> pn—i =M for large n. (2.8)

i=1

Assume that Eq. (1.1) has an eventually positive solution {z,}. Then M < kF+1/(k 4 1)k+1
and

lim sup —2= ﬁ ipn_i+j < [d(M))F, (2.9)

n=eo Tno =
where d(M) is the greater real root of the algebraic equation

d*t —d* + M* =0, on [0,1]. (2.10)

Proof. As in the proof of Lemma 2.1, we have that M < k**1/(k + 1)**! must hold. We now
prove (2.9). To this end, we let

1 Bhiii 5
Wy, = EZ n-_-t (ZPn—iH) : (2.11)

and first prove that
lim sup @, < d(M). (2:12)
n—0co



From (1.1), we have

Tntj+l — Tntj + PrntiZnrj—x =0, 7=0,1,...,k—1.

Summing the above equality from 7 =0 to j = k — 1, we have

k-1

Tn = Tntk + I PrtiTnijk-
=0

Since {z,} is eventually decreasing, it follows that
k-1 k-1
ZTn > an+jxn+j—k =2 an-i-j Tn-1,
i=0 =0

and so fori = 1,2, ..., k, we have

Trn—i :
Y Hams| €1,

Tn—i+1 j=1

Summing the last inequality from ¢ = 1 to i = k, we obtain

j PRI L
-{U—n=E2 = (an—i-i-j) <1l:=d;.

i=1 Tn—i+l j=1

(2.13)

(2.14)

Thus (2.12) holds for M = 0 because of d(0) = 1. We now consider the case when 0 < M <
k¥t1/(k + 1)%+1. Using (2.8) and the Arithmetic-Geometric Mean Inequality in (2.14), we

have

Tk 1/k Tn—k dk
M (% ) o
( . <d, or - < I

Since {z,} is eventually decreasing, from (2.13), for i = 1,2, ..., k, we have

k-1

Tn—i+l = ZTptk—i+l T an—i+j+1$n—i+j—k+1
Jj=0
k

> Tppk—itl + D ProitiZnois
j=1

and so

Tntk—itl k Tn—i

s e n—1u

1> 2 4y i ——
Tp—i+1 j=1 Tn—it+1

The last inequality, in view of (2.15), yields

Ln—i

Mk k
1> & + > Pn—it

e Tn—i+1

6
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Summing the last inequality from ¢ = 1 to i = k, we obtain

k Mk k
k> 7+ Z an—z-{—jv .
dl i=1 Tp—it+l =1
Thus
1 k Tp—i M k
Wy = — - <1l- = ds. 217
"k ; Tp—it+1 (Jz:lpn H_j) dk 2 ( )
Using the inequality (2.17) and repeating the above arguments, we have
Mk
n < 1-— F = dg.
Following this iterative procedure, by induction, we have
Mk
wn < ]. - dk = dm+1, m = ].,2.j aas (218)

Now (2.12) follows from similar proof as in Lemma 2.1. Next, using the Arithmetic-Geometric
Mean Inequality in (2.12) we have

T 1/k 1k o o [k
lim su = Ty <l = i i | < d(M

which leads to (2.9). The proof is complete.
Observe that the number M in Lemma 2.2 satisfies

o Mk = kk+1 k & kk
= T\ Dk T (k4 1R

and the last equality holds if and only if ¥ = 1. Thus, from Proposition 2.1, we have the
following conclusion about the equation (2.10).

Proposition 2.2. For Eq. (2.10), the following statements hold true:

(1) if M =0, then (2.10) has ezactly two different real roots dy =0 and dy = 1.

(ii) ifk#1and 0 < M < kF*1/(k+1)¥+1, then (2.10) has ezactly two different real roots
dy and dy which satisfy

dy € (0,k/(k+1)), dy€ (k/(k+1),1).
(i) if k=1, then (2.10) has two real roots of the form

Y =
d1=L_;_4 — d2=1_+12—4M_



Remark 2.2. The number d(M) in Lemma 2.2 satisfies

=1, M=0
E(M) is { e (k/(k+1),1), k7é1,0<MSkk+1/(k+1)k+1
=(1+v1-4M)/2, k=1.

This implies that d(M) < 1 and the equality holds if and only if M = 0. Observe that (2.8)
implies

ko k
]_—_[ an—i—j—j _>. Mk-
i=1j=1
Thus, from (2.9), we have
lim inf > [d(M)]FM*.

n—oo _'L‘n_k

3. OSCILLATION CRITERIA FOR EQ. (1.1)

In this section, by using the results in section 2, we establish new oscillation criteria for
(1.1). From section 1, we see that all solutions of (1.1) oscillate if (1.3), or (1.4) or (1.5)
is satisfied. Therefore, we establish oscillation conditions for (1.1) in the case when none of
these conditions is satisfied. Let

1k
p = lim inf % > Pai. (3.1)
i=1

Theorem 3.1. Assume that 0 < p < k*/(k + 1)**! and that there exists an integer [ > 1
such that

lim sup {Z DPn—i k!—" k H Z Pr—i+j

B i=1 i=1j=1
k m+1
+ S ST Py (3.2)
m=0 i=1 g=0

where d(kp) and d(u) are the greater real Toots of the equations
d** — d* + (ku)* =0 (3.3)

and
dktl — d% + u =0, (3.4)
respectively. Then all solutions of (1.1) oscillate.

Proof. Assume, for the sake of contradiction, that (1.1) has an eventually positive solution
{zn}. We consider the two possible cases:



CASE 1. = 0. In this case we have d(kp) = d(u) = 1. From (1.1), we have
Tp—i = Tn—i+1 + Pn—iZn—k—i, 2=1,2,..., k.

Summing both sides of the above equality from 7 = 1 to i = % leads to

k
Tn—k = Tp + an—ixn—k—i-

=1

From (1.1), for any positive integer j, we have
Tn-k—j = Tn—k—j+1 + Pn—k—jTn—k—j—k-

Substituting (3.6) for j = ¢ into (3.5), we have

k k
Tn-k = Tn + an—z'ﬂ?n-k-z'ﬂ + an—ipn—k—i&»"n—i—zk-

i=1 i=1

Substituting (3.6) for j =i + k into the last equality, we have

k k
Tn-k = TpT an—a'l‘n—k—iﬂ - Epn-ipn—k—ixn—%—i—t-l
=1 i=1
k
+ zpn—z'pn—-k—ipn—%—-imn—i—:ik-

i=1
By induction, it is easy to prove that

k k
Tnk = Tn~+ ) Pn-ifn—k-i+1 + P T S

i=1 i=1
k

+ Zpn—ipn—k-—z’pn—zk-—ixn—3k—i+1 SRRl

i=1

k
+ an—ipn—k—z‘ * 0t Dn—lk—iTn—(14+1)k—i+1

i=1

k
=+ ZPn—z‘Pn-k-i * 0t Pa—(I4+1)k—iTn—i—(1+2)k-
i=1
Removing the last term of the last equality, we have

-1 k m+1

k
Tn-k = Tn+ zpn-—ixn-—k—i+l -+ Z Z$n—(m+2)k~i+1 H Pr—jk—i-

i=1 m=0 i=1 =0

9
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In the proof of Lemma 2.2, we have (2.14) holds. Using the Arithmetric-Geometric Mean
Inequality in (2.14), we have

& 1/k
( Hzpﬂ. z+3) < 1!
Z, 1

k
i=1j=1
and so
(]___[ an 1+J) Tn—k- (38)
i=1j=

Substituting (3.8) into (3.7) and using the fact that {z,} is eventually decreasing, we have

-1 k m+1
Tn-k > (an it H Zp'n-t+3 + Z Z H Pr—jk— z) Tn—k-
=1j=1 m=01i=1 j=0
Dividing both sides of the last inequality by z,_, and taking the limit superior as n — oo,
we have

-1 k m+1
1= hmsup {an—z + ]_—_[ an-—zﬂp £ Z Z H pn—gk—'}

i=1j=1 m=0i=1 j=0

This contradicts (3.2).
CASE 2. 0 < p < k*/(k + 1)¥+1. In this case, for any n € (0, 1), we have

1 k
% D i Zp—n (3.9)
i=1
From (3.7), we have
-1 k m+1
Dok = Tn+ zpn iTn—k + Z Tn— (m+2)kz H Prn—jk—i- (310)
i=1 m=0 i=1 j7=0
By Lemma 2.2, we have
k k
Tn 2 {[&(k(,u - ﬂ))]'k — 1} H an—i+jxn—k; (3.11)
i=1j=1

where d(k(u — 7)) is the greater real root of the equation
" —dF + EF(u—n)F =0. (3.12)

By Lemma 2.1, we have

—(m+1)k

Tn—(m+2)k = {[d(“ - n)] - n}xﬂ—-k! (3'13)

10



where d(u — n) is the greater real root of the equation
d* —d* +(u—n)=0. (3.14)

Now substituting (3.11) and (3.13) into (3.10), we obtain

Tpn-k 2 an—zxn—k B {[—(k ,U. 77 - ??} H an—i-l-.?xn k

i=1 i=1 j=1
-1 k m-+1

+ Z{[d(#— el 77} Z H Prn—jk—iTn—k-
m=0 i=1 j=0

Dividing both sides of the last inequality by z,_; then taking the limit superior as n — oo,
we have

n=e | iz i=1j=1

k k k
1 > limsup {an—i +{[d(k(e — ) ™* =0} [T D_ Prins

m=0 i=1 j=0

-1 k m+1
3 (- )~ ST pk} |

Letting n — 0, we have d(k(u—7)) — d(ku) and d(u—n) — d(u), so that the last inequality
contradicts (3.2). The proof is now complete.

Notice that when k& = 1, from Remark 2.1 and Remark 2.2, we have d(u) = d(u) =
(14++/1—4u)/2, so condition (3.2) reduces to

-1 m+1
lim sup {cpn +Pnr+ 3 O™ T pacye 1} =1, (3.15)
m=0 j=0

where C = 2/(1 4+ /1 —4u), u = liminf, . p,. Therefore, from Theorem 3.1, we have the
following corollary.

Corollary 3.1. Assume that 0 < u < 1/4 and that (8.15) holds. Then all solutions of the
equation
Tntl — Tp T+ PnTpn_1 = 0 (316)
oscillate.
A condition obtained from (3.15) and whose checking is more easy is given in next corollary.
Corollary 3.2. Assume that 0 < p < 1/4 and that
2
1++4/1—-4
(—Lz——‘i) . (3.17)

lim sup p, >

n—0oo

1



Then all solutions of (3.16) oscillate.

Proof. When p = 0, by condition (1.3), all solutions of (3.17) oscillate. For the case when
0 < u < 1/4, by Theorem 3.1, it suffices to prove that (3.17) implies (3.15). Notice

1+4/1—44 [k
2 T 1-Cn
by (3.17) and u = liminf, . pn, there exists € € (0, ) such that p, > u — ¢ and
. p—e
Cl >1— ——.
i 1-Clu—2e)

The last inequality, in view of the fact that [C'(u —&)]™ — 0 as m — oo, implies that for some
sufficiently large integer [ > 1

Climsupp, > 1- (- E)l{l—_c[(i(ﬁ ;) e)]'"*+'}
= 1-(u—e)=Clu—¢e)’ - - C(u—e)*,

which leads to (3.15), because

-1 m+1
o1+ D C™ ] o1 = (=€) +Cu—e)? + - + CHu — ).
m=0 7=0

The proof is complete.

Observe that when p = 1/4, condition (3.17) reduces to limsup,,_,., p» > 1/4, which can
not be improved in the sense that the lower bound 1/4 can not be replaced by a smaller
number. Indeed, by Theorem 2.3 in [9], we see that Eq. (3.16) has a nonoscillatory solution
if p, < 1/4 for large n. Note, however, that even in the critical state lim,_.. P, = 1/4 Eq.
(3.16) can be either oscillatory or nonoscillatory. For example, if p, = ;11- + :5 then Eq. (3.16)
will be oscillatory in case ¢ > 1/4 and nonoscillatory in case ¢ < 1/4 (the Kneser-like theorem,
[3])-

Example. Consider the equation
1 4

Tpt1 — Ty + (Z + asin —8—) Tp-1 =0,

where a¢ > 0 is a constant. It is easy to see that
1

1
hﬁi{gfpn — liﬁiljl.}f (Z + a sin* %13) — T

12



; : 1 . 4 T 1
lim sup p, = lim sup (— + asin -——) =-+a.

n—co n—oo \4 8 4
Therefore, by Corollary 3.2, all solutions of the equation oscillate. However, none of the
conditions (1.3)-(1.5) and those appear in [4,20,23] is satisfied.
The following corollary concerns the case when k > 1.
Corollary 3.3. Assume that 0 < p < k*/(k + 1)**! and that

5 -k, 2
Hm sup D, i > 1 = [d(ku)]™* (k)" ~ Ik_[ﬁfﬁni’iif;

(3.18)

where ., = liminf,_,c pr, and d(ku), d(u) are as in Theorem 8.1. Then all solutions of (1.1)
oscillate.
Proof. If 4 =0 (then pu, = 0 ), then, by (1.3), all solutions of (1.1) oscillate. If , =0, > 0,
then (3.18) reduces to
k
limsup Y pn—i > 1 — [d(kp)]~* (kw)*. (3.19)

— ;
Tn—00 i=1

From (3.1) and (3.19), for some sufficiently small 5 € (0, 1) we have

k k
Y pni=p—n, lmsup_ pa_i > 1— [d(kp)])*(k(u—n)* (3.20)
g=1

A= =1
Thus, we obtain L
[d(ku)] " i]]ulen_Hj > [d(kp))~* (ks — ).
From this and the second inequality of (3.20), we see that (3.2) holds. By Theorem 3.1, all
solutions of (1.1) oscillate. We now consider the case when 0 < u, < k¥/(k + 1)**!. By

Theorem 3.1, it suffices to prove that condition (3.18) implies condition (3.2). From (3.18),
it follows that, for some sufficiently small n € (0, ) we have

k k(11 —mn)?
500 Y n-i > 1= @k (b = ) — LA e =)

This, in view of the fact that [[d(u)]™*(u. — 7)]™ — 0 as m — oo, implies that for some
sufficiently large integer [ > 1

k
limsup " pos > 1= [d(kp)] ™ (k(u — 7))

— .
n—co i=1

13



R(pa = n)*[d()] {1 = [[d()]~* (e — )]}
1 — [d(u)]~*(pe — m)
= 1—[d(kw)] ™ k(e = n))* = k(u. —n)?[d(w)]*
x{1 4 [d()] ™ (1a — 1) + [A(1)] 7% (1w — 1)?
+ -+ [d)] TR (w, — )1

This leads to (3.2) because

_ k k -1 k m+1
[k ™* TT D" proiss + Zo[d(#)l‘(m“)k > 11 prjii
i=1j=1 m=| i=1 =0

> [d(kw)]T* k(s — m))* + k(e — n)?[d(w)]7F + k(pa — 1)3[d(w)] "%
o R — m) A ()]

The proof is complete.
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Abstract

The concern of this work is the derivation of conservation laws for the
Green—Naghdi theory of non-linear thermoelasticity without dissipation. The
lack of dissipation allows for a variational formulation which is used for the
application of Noether’s theorem. Also, the balance laws in material manifold
and the exact conditions under which they hold are rigorously studied.

Keywords: Conservation laws, material momentum, material forces, config-
urational mechanics

1 Introduction

This work is devoted to the Lagrangian formulation and the derivation of conser-
vation laws of non-linear thermoelasticity provided by Green and Naghdi hereafter
called G-N theory. Green and Naghdi [1] formulated an alternative formulation of
what is called hyperbolic thermoelasticity in which disturbances propagate with fi-
nite wave speeds. The main feature of this theory is that it does not admit energy
dissipation. This by turn allows us to ask if it is possible to consider the G-N the-
ory as a field theory as in the case of hyperelasticity, thus to look for a variational
formulation of Hamilton type. Though short time has elapsed since the G-N the-
ory appeared, many researchers have already presented various results concerning
it. Especially, we mention the work of Dascalu and Maugin [2] who provided the
material momentum equation for G-N theory. For a detailed discussion we refer to
the review papers of Chandrasekharaiah [3] and Hetnarski and Ignaczak [4].



Our main concern lies in conservation laws related to this theory, especially in
the framework of the so called material or configurational mechanics as refered by
Maugin [5]. By this term is meant an approach to continuum mechanics focused
on the material configuration providing new insights and a unified view of disparate
topics like fracture, phase transitions, dislocations etc are obtained. The interested
reader can find a nice and extended exposition of this view in the aforementioned
book of Maugin and in the recently published books of Gurtin [6] and of Kienzler
and Herrmann [7]. To obtain conservation laws we use the celebrated theorem of
Noether exploiting by this manner the obtained variational formulation. It is well
known and widely used by many researchers in continuum mechanics that according
to Noether’s theorem it is possible to obtain a conservation low for every given
variational symmetry. But it seems that what Lovelock and Rund [8] call ”invariance
identity”, that is a necessary and sufficient condition for the action integral to be
invariant under a given infinitesimal group of transformations is not often used. We
used this condition rather systematically not only to explore necessary conditions
for invariance of the lagrangian but rather to obtain the non-homogeneous terms of
the material balance laws, i.e., the so called material forces or some kind of moment
of such forces. We use throughout the paper alternatively the vectorial as well
as the index notation to represent Cartesian vectors and tensors, thus rectangular
coordinate systems are adopted in all cases. The motion of a thermoelastic body is
described by the smooth mapping

Lo = ma(XA):

where A, a=1,2,34, X,=t, z,=0, ©=0(X,t)=0(X,)isthetempera-
ture scalar field. Also, we use the notation X to denote the material space variable,
and x for the spatial position of the particle X at time ¢. In a coordinate system
these variables will be written as X, L = 1,2,3 and z;,7 = 1,2,3, respectively.
Thus, the motion is alternatively written

mi::ci(XL,t), 6=6(XL,t)

Generally, if it is not otherwise denoted, Greek indices will range from 1 to 4, while
the lower-case Latin ones will range from 1 to 3. Also, the capital letters K, L,

M,...will range from 1 to 3 and A, B,... from 1 to 4. We use two distinct differential

operators =2— and 5% The former is the usual partial derivative operator while
9Xa P

the latter denotes the partla.l derivative which accounts for the underlying function
composition. For instance,

D OF  OF oz,

x, L Xe:5(Xe)) = 55—+ 5%,

Also, the usual notations GradF = VgF = DD; , DivF = g—;& and F = D F for

gradient, divergence and material time derivatlve respectively are used.



2 Preliminaries on Green—Naghdi Theory of Ther-
moelasticity and Noether’s Theorem

According to G-N theory the field equations of thermoelasticity of type II [1] i.e.,
the momentum and energy equations are given respectively as follows

% — DivT = 0, (1)
DYV DO :
~(p; + M +tr(TF) —§-Vz0 =0 (2)

where p = pgv is the physical momentum, v = %% is the velocity field, ¥ is the free
energy function per unit volume, T is the first Piola—Kirchhoff stress tensor, F is
the deformation gradient tensor, S is the entropy flux vector and 7 is the entropy
density per unit volume.

Also, the constitutive equations are given in the form

ov ovr ov
=% o5 " oa )
In a rectangular coordinate system the first two of them can be written
ov ov
Tre = (4)

N aflfi,L7 L= —%,

where § = Vg, a = a(X, t) is the so called by Green and Naghdi thermal displace-
ment field, a scalar field earlier introduced by other reasearchers as well. According
to G-N theory the thermal displacement is a primitive concept and the temperature
field is defined to be the time derivative of a, thus

O(X,t) := %a(x, t)

In the sequence, for the needs of the present work we give some fundamental
elements related to variational symmetries and Noether’s theorem. Let a C? function

L= T X4 vsTaa)y A=1LZ..mo=12.m

where X4 € G, G is a smooth domain of R™ and z,(X4) is a sufficiently smooth
function. Consider the functional I : C*(G) — R given as follows

I(ﬂ?a) = L L(XA‘J Les ma,A)dV (5)

* Hereafter, we shall refer to functional (5) as action integralal. The necessary condi-
tion for the functional I to attain an extremum is given by the well known Euler—
Lagrange equations

L D , oL

6%—DXA(6%A)=U, VX €@ (6)

3



where the summation convention is used when repeated indices are appeared.

Consider now the n + m—dimensional Euclidean space E™*™ made up by the
depedent and indepedent variables and the continuous group (actually it is a Lie
group) of point transformations in this space

X.A =XLA(XB,$‘3;EW),
Ta = ja(XBuxB;fw)s w= 1: 25 vy b (7)

with ~

Xa(Xp,25;0) = X1, %a(XB,250) = Za,
where X, and %, are C* with respect to X B, Zp and analytic with respect to e,
in the domain of their definition. ¢, denotes the py—dimensional parameter of the
group.
The corresponding group of infintesimal transformations will be given by the rela-
tions

Xo=Xa+en28, (8)
Fo=%s + ey, 9)
where .

0X 0z,
ZX(XBax.@) = _A(E’w = O): Q;U(XBvxﬁ) = _(Ew = 0) (10)

dey Oey

The vector field over the space E™*™ defined by the relation
0 0
w=2L4=—— — 11

Ve =Zi5x, T b, (1)

will be called the infinitesimal generator of the group (7).

We will say that the vector field (11) or equivalently the group (7) is a variational
symmetry [9, 10] of the action integral (5) if the latter is invariant under any member
of the the transformation group (7), that is

[G L(X4, Ta, Tas)dV = /G L(X 4, Fa, 55.4)dV, (12)

where a tilde over a quantity denotes the transformation of this quantity under egs.
(7).

Next theorem [10] will provide the so—called infinitesimal critirion in order a
functional to be invariant under a continuous group of point transformations.
Theorem The group of transformations (7) is a variational symmetry of the func-
tional (5) if an only if

DZE

= =1,2,.. 1
.DXA 01 w 34y !Ju’: (3)

VOL+L



where VY denotes the first prolongation [10] of the infinitesimal generator (11).

After that we can easily prove that eq. (13) is equivalent to equation:

oL ., oL .,
X, A T gt T

8L , D¢ DZg

D% _, DZy
92 4 DX ok DX,

DXy

Vel =0, (14)

refered by [8] as invariance identity.
We proceed now to the Noether’s theorem of which we give a version [8] convenient
to our objective

Theorem of Noether If the functional (5) is invariant under the pu—parameter
group of transformations given by egs. (9-10), there exist pu conservation laws of
Fuler-Lagrange equations (6) given by

Dgg L D 0L ... .
_DXA - [5277 - DXA(a.’LT%A )](C’y :B'Y,BZB) - 0: (15)

where 5L 9L
BA =—(LZA -mﬂ?a,BZB +m§§). (16)

3 The Variational Principle

Definition 3.1 The Lagrangian function of a thermoelastic body without dissipation
18 defined to be of the form

0r; Oa 1 Ozx; da

-i:'a_““_}— = -i-'i— )_.—:.1_' 17
L(XL,:E 87 BXL 3XL) sz(XL)ir.T: \I’(XL 3XL (84 3XL) ( )
The above definition indirectly provides the independent constitutive variables which
should be 5 9
T; o
T e — = :
0Xy’ “ F=3x;

in complete accordance with the corresponding ones that Green and Naghdi in-
troduced in what they call thermoelasticity theory of type II [1]. After that, the
functional I for the case under discussion will take the form

I(zi,0) = /: ’ fn L(Xz, &, &, 7iz, 0.0)dV dt, (18)

where § is a smooth domain of R® and [t1, t2] an interval of R. Notice that L is not an
explicit function of x; by virtue of Galilean invariance (translations in physical space
of placements). Neither is it an explicit function of a itself , this implying a s sort
of gauge invariance very similar to that of electrostatic for the electric potential. To



proceed to the variational principle we have to add initial and boundary conditions.
Let us suppose that the functions z, = (z;, @) satisfy the following restrictions

Zo(Xp1,t) = ga(Xr,t), Xp €0, te€[t,i]
$Q(XL, tl) = ha(XL), XL < Q, (19)
xa(XL,tz) =ma(XL), X EQ,

where gq, ha, Mo are C? functions on the domain of their definition and moreover
fulfil the compatibiliy relations

ga(XIn tl) = ha(XL): ga(XL7t2) = mcr(XL)-

The variational statement for the G-N theory can be writen as follows:

Proposition 3.1 Let the constitutive relations (3) hold. Among all admissible
functions of motion and thermal displacement for a thermoelastic body without dis-
sipation which satisfy the initial-boundary conditions (19) those ones affording an
extreme value to the action integral defined by (17-18), will satisfy the field equations
(1-2).

PROOF We can write in a more elegant and compact form the argument of the
Lagrangian as
0z,
A

LZL(XA,'EX.—), (20)
where now z4 := a.

Hence, the corresponding Euler-Lagrange equations, i.e. egs (6), will take the form

D(@L

— = X4 € QX [t,to). 21
DX, 63:&,,4) 0, VXa€QX][ty, i (21)

What remains is to analyse equations (21). For our problem, they can be written as
D 6L \ D oL - D (8L _
DX4 \8Zan) DXp\Ozer) Dt\O8is)
D oL D (0L D aL D (oL
(DXL (a:cz-,L) D (c’kizi) > TR (ax4,L) "Dt (a_m)) =0 4ek)

Taking into account the form of Lagrangian (17), equations (22) can be written as

D ov
( ) ‘_gg(pﬁ:m")=05 XLGQ, te[tlatQ]:

DXL B:ci,L
D ov D (07
DX, (562_1,') +5¥ (5(;) =0, Xr€, te [tlat2]'

6



Inserting now constitutive relations (3) into the above equations they transform to

DTy By s
BX. ~ T ler) =0, (23)
DSL DT) _

DX, + i 0. (24)

Thus the variational statemenet provides two equations. The first of them, i.e., eq.
(23) is the equation of motion and coincides with the corresponding one of G-N
theory, that is eq. (1). The second one, i.e. eq. (24), is an equation for the balance
of entropy which is also included in the treatmenet of Green and Nahdhi [1]. Thus,
the Proposition 3.1 is partly proved. O

Remark 3.1 As far as the variational principle is considered, the field equations for
thermoelasticity without dissipation are egs. (23)—(24) instead of (1)—(2) of G-N
theory. The other required equation, i.e. eq. (2), is an energy equation and can not
directly rise from a variational principle. What can be expected is to appear as a
consequence of Noether’s theorem considering invariance in time translations.

4 Variational Symmetries and Conservation Laws

Having obtained the variational principle, we can proceed to explore particular cases
of variational symmetries related to it.

4.1 Invariance under Translations

First, we shall consider invariance in material space and time translations.

Lemma 4.1 If the action integral of a thermoelastic body without dissipation is

wmwvariant under the group of space and time translations, then it is a homogeneous
body.

PROOF The group of translations in material space and time is given by the fol-
lowing relations

XA=XA+€5wA: w=1,2,3,4,

By ="Tp; (25)

which means that Z% = 8,4 and (¥ = 0. After that the proof is a simple consequence
of the invariance identity (14), which for the group (25) results in

oL oL
=0 =0 (26)



The second of (26) is satisfied by the definition of the Lagrangian and the first one
is what we want to prove. O

Next, we give the main result of this subsection.

Proposition 4.1 Let the motion and the temperature functions z; and © satisfy
the field equations (23-24) for a homogeneous thermoelastic body without dissipation
through constitutive relations (3), on the domain Q X [t1,t2]. Then the following
conservation laws also hold on 2 X [t1, ta].

D D .
DX, (Léxr + Trizsx — SiBx) — Di (prEizix +nbBx) =0, (27)
D ) D ..

PROOF The assumptions of the proposition imply that the symmetry (25) holds,
thus we can use the general form of the conservation laws (15). With the aid of eq.
(16), the quantity 6% for the case under discussion will take the form

oL

GA = —L(SwA + mxa,w w = ]., 2, 3, 4 (29)

and the corresponding conservation laws will be

Dz D oL
—DXA = DXA (L(SWA it "B:BTA:BQ,‘U)) - 03 w= 17 2: 3$4 (30)

L]

Equation (30) can be analyzed in

D oL
D—XA(L&LA = a.’Ea’A iCa,L) = 0, L= 1, 2, 3
and
D 0L
Lésq — i) == O
53 Pha ;s
Furthermore, developing the last equations we obtain
D oL oL D 0L oL
m(LfSLK - m?«'i,L - EQ,L) - ﬁ(gal‘w ey %Q,L) =0,
(31)
D oL oL D OoL. 0L
“ DX rg T o T e 355 " 3 O

Finally, inserting the constitutive relations in (31) we obtain the required relations
(27-28 ), hence Proposition 4.1 has been proved. O

8



The second of the just obtained conservation laws, eq. (28), corresponds to time
translations, thus it is related to the conservation of energy. In the sequence, we
~shall prove that it could provide the second of the equations of G-N theory, i.e., eq.
(2). Indeed, inserting the lagrangian (17) into (28) we obtain

D
DXy,

D1
(Trl; —5:8) — 'b”g("z‘PRUiUi + ¥ +70) =0. (32)

After some simple calculation and taking into account equation of motion (23), we
can write eq. (32) in the form

—(¥ +6n) + Trvir — S0, =0. (33)

Equation (33) coincides with eq. (2), hence Proposition 3.1 has been completely
prooved.

Remark 4.1 It is noted that to obtain eq. (33), the homogeneity of the Lagrangian
with respect to the material space variables is not required. What is really neces-
sary is the homogeneity with respect to time which is assumed by the Definition
3.1 of the Lagrangian . That’s why there is no requirement of homogeneity in the
statement of Proposition 3.1.

Remark 4.2 It is easy one to confirm that the invariance of the action integral (18)
under the group of translations in physical space will provide the Euler-Lagrange
equations, i.e, egs. (27) and (28).

4.2 Invariance under the Scaling Group
In this case we will use the following one—parameter group of scalings in material
and physical space

5{ a=Xa+eXy,

T = Zu — €Dz (34)
Thus invoking the relations (10) we obtain

Zy=Xp, Ca=—Za, (35)

which by turn are substituted into the invariance identity (14) to obtain

Lemma 4.2 The action integral of a thermoelastic body without dissipation is in-
variant under the transformation group (34) if and only if its Lagrangian fulfils the

identity - a7
mXA ) 2(m)$a,.4 + 4L =0. (36)

9



The most interestig result for the scaling group concerns the linear case for which
the following identity holds

Lemma 4.3 Let us assume that a thermoelastic body without dissipation admits
linear constitutive relations risen from (3), then it’s Lagrangian satisfies the follow-

ing identity 5
L
—— 2o 4 =2L. 7
8$a,A3: A=2L (37)

PROOF Let us assume that the free energy function is a quadratic function of the
indepedent constitutive variables

or; . Oa
lp X yav % oy /T
X 5%, % 5%,
1
E[Cinsz',Kx 5L+ ex1Bxfr + dO%) +
cGkLTikPr + cixZixk© + dxOfk (38)
4,5, K, L=1,2,3,
s0 as to obtain the linear constitutive relations
ov 1
Txi = 5— = 5(Gijxr + cjirx)Tiz + cixrfr + cix©,
aIIIr;,,K 2
ov 1
—Sk = B 5(6}{1, +erk)fr + cikrZir + dx©, (39)
ov
—n = % =do + G T K + dk Bk,

where ¢;jxz,€exr,d,dx, Cikr, Cik are material functions depending on material space
variables X. In the case of homogemeous body they reduce to material constants.
After eq. (38), it is a matter of a straight calculation to obtain relationship (37). O

Proposition 4.2 Let the motion and the temperature functions x; and © satisfy
the field equations (23-24) for a homogeneous thermoelastic body without dissipa-
tion through linear constitutive relations (39), on the domain Q X [t1,t2]. Then the
following conservation law also holds on 2 x [ty, to].

D )
DX, [(Lékr + Trixix — SiBx) Xk + (Trsd; — SOt + Trix; — Spa +

D
Ik

L. s : ;
[~ (5prEd: + e)t — (prEiTix +NBx) Xk — prE:Z; — N = 0, (40)
2

where e = e(X, t) is the internal density function per unit volume.

10



PROOF The linearity of the thermoelastic body implies that the Lagrangian meets
the relation (37). Furthermore, in virtue of the homogeneity of the body, the in-
variance identity (36) also holds. Thus, for the case under discussion, the action
integral is invariant under the group (34). That means we can invoke the general
form for the conservation law given by eq. (15). Due to the fact that the group (34)
has only one parameter the quantity (16) will take the form

oL oL
Oa=—(LXa — 5—TapXp — 5 "

0%an To) (41)

and the conservation law corresponding to the symmetry (34) will be

D6y
-5 X 0=
D oL oL
LX)y — —— Xep = 0.
DXy ( 4 O 4 SeBE 0T d sca) . (42)

The equation (42) can be analyzed as follows

& (LXL — a—L(flJa,MXM + .’i?at) - —8L—:ca) +
Bma,L

DXL a.’BQ,L
D oL i OL
H.-D_.t- (Lt - 'é&:-;—(.ra,MXM + :Eat) — é-j—:;xa) ==
D oL oL oL oL
i = : B} = W) = ity
DX, (LXL Brer (@, X + Zit) Bors (ap Xy + at) 3355,L$ fas a) -
D ) . 0L . 8L 8L\ _

(43)

Taking now into account that the internal energy is related with the free energy
function by

e="—-0On
and invoking the relations (3) and (17) we can easily obtain from (43) the required
conservation law (40). O

4.3 Invariance under the Group of Rotations

In this section we will examine the invariance of action integral (18) under rotations
of spatial variables. That is the group SO(3) in the physical space which is given
by the following equations

Xa=Xa, A=1,234

ili == Qijmja Z:j = 11 2:39 (44)

f4 = T4,

11



where Q is an orthogonal matrix with detQ = 1. The corresponding infinitesimal
group is given by

Xk = Xk,

X4 = Xy,

Fi = T + €pj€u s,

=28 LiJDRw=123 (45)

So, we take for the quntities given by egs. (10)
x =2y =0, ' =ewniz;, (G =0. (46)

Inserting egs. (46) into the invariance identity (14), we obtain the following result

Lemma 4.4 The action integral of a thermoelastic body without dissipation is in-
variant under the transformation group (44), if and only if its Lagrangian fulfils the
tdentity

oL

Ciwj A
Oz x

Invoking the constitutive relations (4) we easily obtain

Tig = 0. (47)

ew,;jTKi.’Ej,K =0. (48)
After that, one can easily prove the following proposition

Proposition 4.2 Let the motion and the temperature functions z; and © satisfy
the field equations (23-24) for a thermoelastic body without dissipation through con-
stitutive relations (3), on the domain § X [t1,ts]. Moreover, let the lagrangian fulfils
the identity (47). Then the following conservation law also holds on 2 X [t1,t2).

D D .

DX, (eiwj®iTks) — 357 (PRE:w;E:T;) = 0 (49)
Remark 4.3 Equation (49) is the balance of angular momentum for the G-N theory.
Certainly, this equation jointly with equation of momentum (eq. 23) can provide
us, as usually, the symmetry of the tensor T7;z;r. But this is erroneous because it
is an assumption for the Proposition 4.2 ( see eq. 48) and not a consequence of it.

5 Material Balance Laws

So far, we have presented conservation laws of the G-IN equations of thermoelas-
ticity. From the point of view of material mechanics, it is interesting to focus on

12



what can be called material balance laws, that is the corresponding to conservation
laws non—homogeneous equations. To obtain such equations we must allow for the
presence of sources in the already derived equations. This by turn, can be done by
relaxing the assumptions we have posed in order to obtain them. By this manner,
for every conservation law, having found the conserved quantity, we can obtain a
balance (non-conservation) law. Depending on the particular equation, we expect
these non-homogeneous terms to be the so—called material forces or moment of such
forces.We will apply this procedure to conservation laws (27) and (40).

e The Canonical Momentum Balance Law

We proceed now to the above mentioned procedure for the eq. (27) by removing the
homogeneity of the Lagrangian from the assumptions of the Proposition 4.1. Let
assume that the Langragian (17) does depend explicitly on material variables, that

is

oL

oXy

In this case no symmetry with respect to space translations can be secured. In

spite of this, the Euler-Lagrange equations still hold and it is possible to produce a
balance law by calculating the expression

Do3
DX4’

which certainly does not vanish identically any more. Indeed, calculating this term
we obtain

0, L=123

w=1,23 A=1,23,4

D% D oL
DXA o _D.XA (L(SWA B Bwa,A xa,w)
_ o _ oL . D (OL) 9L D . .
6Xw a-'lﬂ'a,A a,Aw DXA 817&,,4 W 8ma,A DXA oW
oL D oL
= “ax, T Dx, (ama,A) et (50)

The last term on the right hand side of (50) vanishes due to the Euler-Lagrange
equations, thus we conclude

Doy oL
e _ 1
DXy4 0X, (5L}
But the Lhs. of eq. (51) has already been calculated in Proposition 4.1, hence
equating the r.h.t. of egs. (30) and (51) and taking into account eq. (3la), we can

write

D oL
DX L BX K ’
which is the expected material balance law refered by some authors [5] as canonical
momentum equation or pseudomomentum equation.

K,L=1,2,3, (52)

D :
(Lékr+Triwix —SLPk)— Dy (prZiTix +10K) =

13



e The Scalar Moment of Canonical Momentum Balance Law

In the same way, we can elaborate the conservation law (40) related to scaling
symmetry. Hence, removing the assumptions of constitutive relations linearity and
the homogeneity of the Lagrangian with respect to material variables we calculate
directly the quantity

Db,
DXi:
D oL oL

an4(L3¥"azmAm%B B'"axmAxa)"

oL oL

G_X_{XL —_ 2(63;:)27(:,_4 -+ 4L, (53)

a,A=1,234, L=123.

Inserting now into eq. (53) the already estimated left hand side from Proposition
4.2, we obtain the following balance law

D
DX, [(Léxr + Trizix — S1Br) Xk + (Tpid; — SpO)t + Triz; — Spa] +
D | S ; :
Bz~ (5PrE:E: + €)t — (pr&:zix + nPK) Xk — pri:T: — 0] =
oL oL

We remark that equation (54) is valid for non-linear, non-homogeneous thermoelas-
ticity in the framework of G-N theory. Hence, for linear thermoelasticity, invoking
Lemma 4.3, the balance law originated by scaling symmetry will become

D .
E{—: [(L5KL + TLe'-'IUz',K - SLﬁK)XK + (TLixi = SLe)t + Ty — SLOd] +

D 1 .. ) .
PrRE:E; + e}t — (prZ:Zix + nPx) Xk — PrET:T; — NO =

L
E[_(E Xz. (55)

00Xyt

Eq. (55) holds for linear, non-homogeneous thermoelasticity and represents a bal-
ance law for scalar moment of pseudomomentum or canonical momentum. The
coresponding balance equation in physical space is not often used because it does
not play any role in the description of the equilibrium or the motion of a body as
does, for instance, the momemtum or angular momentum equation. In the case of
physical space, the factors that balance the rate of scalar momet of momentum are
refered as scalar moments or virials. So the right hand side term of eq. (55) is a
sort of material scalar moment or material virial.

14



6 Comparisons and Conclusions

The above—obtained results can be compared to previously appeared work of other
researchers. We must especially refer to the work of Dascalu and Maugin [2] for
G-N thermoelasticity and Maugin [5] and Fletcher [11] for elasticity. Let us return
to eq. (27) which represents the canonical momentum equation. It can be witten in
the form

D
DXy

1 . D .
((5,01233@'335 — U)okt + Trixi x — SiPx) — ‘D—t(PR%'SEi,K +n8k) =0,

or
2

Din((pny ~ V)T + TF ~ $© ) - —,%(pRFTV +18) =0. (56)

Equation (43) coincides with the corresponding one deriving through a vectorial
approach in [2]. Conservation laws (27), (28) and (40) restricted to the case of
elasticity are in full agreement with the corresponding ones given by [5] and [11].
To obtain a more clear collation we introduce the following definitions [5, 2]

brx = —(Lérx + Trixix — SiPBk),
QL = TLzr-’i"z' - SLB,

1
H= §PRi'i~’1'3i + g,
Pr = —(prt:zir + 1BL), (57)

for Eshelby stress tensor, material fluz energy, Hamiltonian, and pseudomomentum
vector respectively.
After definitions (57) , the balance laws (52) and (55) can be written in vectorial

form as follows

DP
. TYa it S f'm.h-
Divb + Di (58)

and

Diw(-bX + Qi+ Tx—So)+
%(—Ht—i—P-X—-p-x—na):finh-X, (59)

where following Maugin [5] we have defined

inh __ oL
)¢
for material force. We recall that the last equation holds for non-homogeneous

but linear thermoelasticity of G-IN. Under this restriction and in the framework of
elasticity it can be compared with eq. (4.89) of [5].
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A NEARLY-PERIODIC BOUNDARY VALUE PROBLEM
FOR SECOND ORDER DIFFERENTIAL EQUATIONS

G. L. KARAKOSTAS AND P. K. PALAMIDES

ABSTRACT. By utilizing a combination of properties of the consequent mapping with
the Brouwer’s fixed point theorem we obtain existence results for the nearly-periodic
boundary value problem

z" = f(t,z,2'), te€[0,1]

z(1) = Qg '=(0), z' (1) = Q7 '2'(0),

where Qp,Q1 are complex valued nonsingular matrices.

1. INTRODUCTION

Let C™ denote the n—dimensional complex Euclidean linear space and let I
be the interval I := [0,1]. Let Q be a convex, open subset of the product space
C" xC™ and let f : I x Q2 — C™ be a continuous function. In this paper we provide
sufficient conditions for the existence of a (complex valued) solution z of the vector
differential equation

2" = fltoa), tel (1.1)

satisfying the conditions
z(1) = Qy'z(0), 2'(1) = Q;1z'(0), (1.2)

where Qg, Q1 are nonsingular » X n complex valued matrices. The problem under
investigation is inspired by the periodic problem (in the real case) concerning (1.1),
for which the literature is volunimous, as well as by those problems presented in [2,
4]. In [2] the existence of a Sturm-Liouville boundary value problem is investigated,
by transforming it into the equivalent form Lz = Gz and then applying the Leray-
Schauder’s continuation theorem. Also we would like to refer to [5, p. 338], where
by using the Wazewski’s method it was shown that, if in (1.1) the function f satisfies
the well known Hartman’s condition for all ¢ > 0, z and y # 0, then there is a time
to > 0 such that z(¢).z(¢) is nonincreasing on ¢ > fy, where z is the solution of (the
real version of) equation (1.1). For a two-point boundary value problem concerning
a more general differential equation in a Hilbert space discussed by the authors in
[7] the Schauder’ s fixed point theorem is used. Notice that in [4], the existence

2000 Mathematics Subject Classification. Primary 34B15; Secondary 34C25.
Key words and phrases. Boundary value problems, nearly-periodic solutions, egress points.
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2 G. L. KARAKOSTAS AND P. K. PALAMIDES

of a solution x of the problem is investigated, where the nonsingular n x n-square
matrices Qo and @Q; satisfy the inequalities

2.QoQ7'y <0 and z.(Qo + Q7 1)y <0, (1.3)

for all vectors z,y € R™ with 2.y < 0 and the matrix Qo is orthogonal. (The dot
denotes the inner product in the real Euclidean space.)

The literature shows a great number of papers refered to both the scalar and the
vector case for the problem (1.1),(1.2), see, e.g., [1, 9, 10, 11] and the references
therein. In [3] Erbe by using a technique, which involves a direct application of
properties of Leray-Schauder degree, instead of (1.3), he used the following condi-
tion:

There is a p > 0 such that @Q; = uQo.

A more general situation of the problem is discussed by the authors in [8]. In this
paper we do use of the Hartman’s condition and give information on the existence
of solutions by combining properties of the consequent mapping with the Brouwer’s
fixed point theorem. Motivated from Erbe’s technique, instead of the orthogonality
condition on Qo, we assume that the matrices Qo, @1 satisfy the relation

Q11 < 1Qoll = Q31 =1, (1.5)

where ||.|| stands for the norm in the n X n complex matrix space congruent to the
euclidean norm of the complex n-dimensional space C™, the norm which equals to
the greatest absolute value of its eigenvalues.

2. PRELIMINARIES

Let J be a fixed interval of the real line such that 7 ¢ J. Consider equation
(1.1) associated with the initial conditions

(r2(r),2'(r)) = (,§,n) == P eI xQ, - (21)

where the function f : J x @ — C” is continuous. Let X (P) be the family of all
solutions of (1.1),(2.1). If z is such a solution, we shall write I, to denote the
connected set of all existence times of z lying in I and such that 0 € I.. We let
D :=J x Q and consider this set as a subset of the euclidean space R x C*. Take a
subset W of D such that both the sets ini(W) and D —cl(W) are nonempty. (Here
int(W) denotes the interior and cl(W) the closure of the set W.) Later on the set
W will be completely definite.

Next we recall some classical definitions. Given a 7 € (0, 1], a point P := (7,&,n)
of the boundary of W (if such exists) is a point of egress, if, given any z € X(P),
there is an € > 0 such that

{(t, z(t),2'(¥)) : t € (T — €, 7)} C int(W).

Also, if 7 < 1, then P is a strict egress point, if, given any x € X (P), there is an
€ > 0 such that

{t,z®),2'(t)) :t e (r,7+€)} C D —cl(W).



A BOUNDARY VALUE PROBLEM 3

(See, e.g., [6].) We denote by W* and W*®, respectively, the sets of egress and
strict egress points of W.

A point P of the boundary of W is a consequent point of Py := (70,&0,M0), if
there is a solution passing from both these points and such that

{(t,z(t),2'(¥)) : t € (10,7)} Cint(W).

The set of all consequent points of Py will be denoted by C(P), while the so defined
(set-valued) mapping
C:N(W) - WwWe

is the consequent mapping. Here the symbol N,(W) stands for the set of all points
of W whose the sets of the consequent points are nonempty.

Given a time 7 € (0, 1] we say that a point P := (1,&, ) of the boundary of W
is a point of ingress of W, if given any solution € X(P) there is an ¢ > 0 such
that

{(t,z(t),z'(t)) : t e (1 —¢,7)} C D —cl(W).

Also, in case 7 < 1, the point P is a strict ingress point, if given any z € X(P),
there is an € > 0 such that

{(t, 2(t),2' () : t € (1,7 + €)} C int(W).

We denote by W* and W, respectively, the sets of ingress and strict ingress points
of W.

It is clear that, if uniqueness of the solutions holds, then the consequent mapping
is a single valued function.

Now assume that X, Y are topological spaces and let F' be an abstract set-valued
mapping which maps the points of X to nonempty compact subsets of Y. Then F'
Is upper-semicontinuous (usc) at a point o of X, if for any open subset A of F(zo)
there exists a neibghborhood U of g such that the set F(z) is a subset of A for all
points z of U.

The following lemmas give sufficient conditions for the upper semi-continuity of
the consequent mapping and some useful properties for a class of usc mappings.
Notice that the consequent mapping C is included in this class (see, e.g., [6]).

Lemma 2.1. If for any point P of S.(W) all functions in X (P) egress strongly
from W, then the consequent mapping C is usc at any point P and the image C(P)
18 a continuum subset of the boundary of W.

Lemma 2.2. Let X,Y be metric spaces and let F : X — 2Y be a usc set-valued
mapping. If A is a continuum subset of X such that for every x € A the image
F(x) is a continuum, then the image F(A) := U{F(x) : 2 € A} is also a continuum
subset of Y.

3. THE MAIN RESULTS

This section is devoted to the main results of the paper. We shall denote by z the
conjugate of the complex number z and by Re[z] its real part. Also the *typical”
inner product-in the n-dimensional space will be denoted by < .,. > .
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Assume that the open set 2 has the property that there is a real number R > 0
such that
Vi=U{V(@):telI}CIx,

where for each ¢ € I we have set
V() ={t,z,y):|z]| <R, y eC"}.

In the sequel a bar over a matrix will denote the matrix with elements the
complex conjugates of the elements of the original matrix.

Theorem. Consider equation (1.1) where the continuous function f : J x Q — C™
satisfies the following conditions:
(F1) For any t € I and (t,z,y) in the boundary of V(t) the implication

if Re[< Z,y>] =0, then Re[<Z, f(t,z,y) > +|y|*] #0

holds.
(F») There is a positive real number M such that any solution z € X (V(0)) with
|z'(0)] < M, satisfies the inequality

|t} < M,

for all t € I, such thatt > 0 and (¢, z(t),2'(t)) € V.
Also assume that the nonsingular n x n complex matrices Qo, Q1 are such that
(M) condition (1.5) is satisfied, and
(M) for all z,y € C* with

Re[< Z,y >] > 0,

it holds B
Re[< Q7'%,Q7y >] > 0,

Then the problem (1.1),(1.2) admits a solution x(t),t € I such that
lz(®)] < R,

forallteI.

Proof. First of all we would like to notice some remarks:

(a) If we restrict the function f on a compact subset Z of J x Q containing the
set V' in its interior, we can approximate it uniformly on the set Z by a sequence
of functions fx(,z,y), which are at least C! on Z. For such functions we have
uniqueness of solutions passing through points at least of the interior of Z. So, if we
show the existence of a sequence of solutions (zz) of the corresponding problems,
with initial conditions in V(0), then these solutions are uniformly bounded by
R, their first derivatives by M and their second derivatives by the real number
sup{|f(t,z,y)| : ({,z,y) € Z}. Hence, by the Arzela-Ascoli’s theorem a limiting
point of this sequence exists which (according to continuous dependence arguments)
will be a solution of the original problem.
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(b) Let K be a compact subset of C* x C* containing the set
E:={(z,y) eC*"xC":|z| <R, |y| < M}.
Define the continuous real valued function
S: (A z,y) = Re[< Q5 'z, Q7 'y >]
and observe that, because of (M), there is a § > 0 such that
S\ z,y) >0,

for all (A, z,y) € [0, 6] x K. Also, multiplying the matrix Qo by the complex factor
e*?, for some real A € (0, §), we can assume that the unit is not an eigenvalue of the
matrix (Jo. Indeed, let us suppose that for each such A, for which the matrix Qg
does not have the unit as its eigenvalue, a solution z, exists for the corresponding
problem. (Notice that each matrix of the form e**Qq satisfies, also, condition
(My).) Then, as in case (a) above, we can get an accumulation point (as the real
parameter A tends to zero), which by continuity, finally, will be a solution of the
original problem.

Now consider the set W of all points (¢, z,y) of V with |y| < M and let Wy be
its cross section at £ = 0, i.e. the set Wy := {0} x E. Let P be a point in Wy and
let # be the unique solution passing from P,. Then we distinguish two possibilities:

(#) The set I is a subset of I and it holds

lz(®)| < R,

for all £ € [0,1). Then we let s := 1. It is obvious that there is a point P € V(1)
guch that (1, 2(1),2(1)}=P.
(it) Either
[=(0)] = R,

or there is a time s € I such that
|z(s)] = R and |z(%)] < R,

for all ¢ € [0, ).
In both these cases, from (F>) we have

' (t)] < M,

for all £ € (0, s).

We claim that the point P := (s,z(s),2'(s)) is a point of strict egress of the set
W. Indeed, in case (i) this fact is obvious. So, consider case (ii), where we can also
assume that s < 1.

Define the real valued function

¢(t) :==|z(t)|®* — R?, tel,
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and observe first that
#(s) = 0.

If
¢'(s) = 2Re[< Z(s),2'(s) >] > 0,

then, clearly, P € W*¢, in case s > 0. If
@'(s) >0, and s =0,
then
P =Pyc W,
Notice that in this case we have
|z(s)| = [(0)| = |xo| = R.
Then we can set
C(P) = PO:

because the point P might be considered as the consequent point of itself.
If .
¢'(s) <0,

then P is a point of strict ingress of W. Clearly, this fact cannot be true in case
§>0.If
s =0 and ¢'(0) <0,

then the solution z must satisfy either (i), or (ii) above (for a certain new time
5>0).
These arguments lead us to discuss only the case

§>0 and ¢'(s) =0.

The later means that
Rel< #(8),2/(8) >] =0

and, so, from (F})
¢"(s) = 2Re[< %(s), f(s,2(s),2'(s)) > +la'(s)[?] # 0.

The case
¢"(s) <0

is impossible. If
¢"(s) >0,

then we have
o(t) >0, for all t € (s,5+¢),

for some € > 0. Thus P € W*¢. Therefore our claim is true.
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So far we have proved that
C(Po) = P = (s,2(s),2'(s))-

From (1.5) we get
|Qoz(s)] < l|Qolllz(s)] =1.R=R (3.1)

and
|@12'(s)] < [|Qullz'(s)| < 1.M = M. (3-2)

Next, consider the set E as above and define the mappings
H:(z,y) = (0,2,9): E—V(0) and h:(,2,9) = (z,9):V = B,
as well as the matrix

Q := diag[Qo, Q1]

Then, from Lemmas 2.1, 2.2, our remark (a) (in the beginning of the proof) and
relations (3.1), (3.2), we conclude that the function

T(z,y) = QnMC(H(z,y))): E— E

maps continuously the closed, convex, bounded set E into itself. Hence, by the
Brouwer’s fixed point theorem it follows that there is a point (xo,%0) € E such that

T(xo,y0) = (%o, Y0)-

This means that there is a solution z such that (2(0),2’(0)) = (xo,%0) € E and
Qoz(s) =zo and Q12'(s) = yo, (3.3)

for some s € [0, 1].

To finish the proof, it is enough to show that (3.3) is true only for s = 1. Indeed,
to prove it, we assume, on the contrary, that s € [0,1). If s = 0, then, as we noticed
above, C(P) = Pp and so, it holds z(s) = zp and z'(s) = yo. Hence from (3.3) we
get Qozo =.xo, Where, notice that |zo| = R > 0. This is impossible, because, from
our remark (b) above, the unit is not a eigenvalue of the matrix Q.

Let us assume that s € (0,1). We distinguish two cases:

Case A. Suppose that

|zo| = |z(s)| = R.

Then, by the definition of the consequent mapping, the initial point Py must be an
ingress point of W, so

¢'(0) = 2Re[< Z(0),2'(0) >] = 2Re[< Zo,y0 >] < 0. (3.4)
For the same reason the consequent point P is a point of egress of W, hence

¢'(s) = 2Re[< Z(s),2(s) >] > 0.
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Then from (3.3) we derive
Re[< Q7 '%0), (Q1 o) >] = Re[< Z(s),a'(s) >] > 0.

This fact together with (3.4) contradict to (F).
Case B. Suppose that
| |zo| < R = |z(s)|.

Then we get
R = |z(s)| = |Q7 'zol < IQ5 [llzo| < L.R= R,

a contradiction. This completes the proof of the theorem. O

Remark. Hypothesis (Fz) holds, if, for instance, we impose a Nagumo type
condition to the function f(t, z,%), namely, if we assume that f(¢,z,7) has at most
a quadratic growth rate in the argument .
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optimal number of cycles, and the construction of the corresponding stability regions for any
set of problem parameters values. The proposed algorithm requires very little computational
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1. Introduction

This paper considers the single product lot sizing problem over a finite planning horizon.
In each time period there is a constant demand for the product in question. Demand not
satisfied immediately from stock on hand, is completely backlogged and it is satisfied at the
beginning of the next period. Holding, backlogging and ordering costs are linear, known and
stationary over the planning horizon. The objective is to determmne the product lot sizes which
minimize the total costs incurred over the planning horizon. The optimal solution for this
problem may be obtained using the dynamic programming algorithm proposed by Zangwill [7].
Blackburn et al [1] and Morton [4] have also developed algorithms providing the optimal
solution for the problem under consideration. The main disadvantage of the above mentioned
algorithms is that they are computationally unattractive. Recently, Federgruen et al [3]
developed a simple optimal algorithm solving the problem in linear time. Chand et al [2],
allowing for varying demand and holding cost, presented a procedure to determine setup cost
stability regions, i.e. sets of setup cost values for which an optimal solution remains valid.

In a previous paper, Papachristos et al [5] studied the same problem, in the non
backlogging case. First we considered the set of policies with say » setups. As it is obvious,
there are more than one policies with » setups, while among them there is at least one, which is
optimal. Working in this set of policies, we obtained the optimal policy. We then proposed a
partition of the set of all admissible policies to a class of subsets. Each subset of this partition
contains policies with numbers of setups belonging to a set of integers. This partition enabled
us to express the optimal total cost, as an analytical function of the cost and demand
parameters and the number » of setups taken by the policy. Using this analytical expression, we
determined the optimal policy within the policies of each subset of this partition. For this
optimal policy we constructed its stability region for the cost and demand parameters. This
cost function was proved to be conve;'i)w.r.t. n, the number of setups considered in the policy.
Using this convexity property and the analytical cost function, we presented an algorithm,
which solves for the overall optimal policy and constructs its stability region for the cost and
demand parameters.

In this paper, we extend the above mentioned results of [5] to the case where
backlogging is allowed. The paper is organized as follows: the next section contains the
notation, and the mathematical formulation of the problem. In the third section, we present
results concerning the structure of the optimal policy and we obtain the optimal one in the set
of policies with n setups. In the fourth section, the total cost of the optimal policy for any given
number of setups is analytically determined as a function of problem's parameters and the

number of setups under consideration. Using this expression we find the optimal policy within



set of policies which constitute a partition of the set of all admissible policies. An example is
given explaining the ideas presented. In this section, we also prove the convexity of the total
cost function with respect to n, the number of setups considered. This convexity property
guarantees the existence of the overall optimal policy. In the fifth section we present an
algorithm which determines the overall optimal policy and constructs its corresponding stability
region, for any set of cost and demand parameters values. The use of the algorithm is explained
with an example. The sixth section contains concluding remarks and directions for further
research. The paper ends with an appendix where we give proofs for some of the proposed

theorems.

2. Problem Formulation
We consider the single product lot sizing problem with the following characteristics:

1. Demand D for every period is known, constant, and satisfied at the beginning of each
period.

2. Ordering (setup) cost S, is constant in every period, it is independent of the quantity
ordered, and it is paid every time an order is placed.

3. Holding cost is h per unit of product per period charged to the end-of-period stock.

4. The planning horizon is composed of T discrete-time periods of equal length.

5. Shortages are allowed. Excess demand during a period is completely backlogged and
satisfied from ordering at the beginning of the subsequent period.

6. Backlogging cost is b per unit of unsatisfied demand per period, charged to the end-of-
period stock.

7. Lot-splitting is prohibited.

8. Lead time is equal to zero.

9. Starting and ending inventory are both set equal to zero.

The following notation will be used subsequently:

ymod (x) =0 : x and y are positive integers and x is an integer divisor of'y.

ymod (x) # 0 : x and y are positive integers and x is not an integer divisor of y.

[x] : the smallest integer greater than or equal to x.

| x| : the largest integer less than or equal to x.

X; : the lot size ordered at the beginning of period i.
I; : stock available at the end of period i, with I, =1 = 0.
NT = {1, 2, aeey T}

1, ifx; >0
£x;) = {, ifx; = 0



The cost for any period iis Sf(x;)+hmax(I;,0) + bmax(-I;,0) . Summing up this cost
over T we obtain the total cost. The objective is to find those x; which minimize the total cost

over the planning horizon T. The mathematical formulation of the problem is the following:

T,
Min Y Sf(x;) + hmax(I;,0) + bmax(-I;,0) )
o
subject to:

i

I =) (x;-D)

=

@
%20, [=I=0,i=1,2,..,T

Any vector X = (X, X, . - . , Xy) satisfying (2) will be called a “policy”. The optimal policy
X, is the vector giving the minimum in (1), and may not be unique. Define a cycle as the time
between two consecutive periods with zero end of period stock. In this paper, we consider
only those policies, which are such that for any cycle consisting of &; periods, shortages are
allowed for the first v; periods, followed by A; periods with positive inventory. The holding and

vi(v; +1) Ai(Ai =1

bD + hD.

backlogging cost for the cycle is then given by g, (A;, v;) =

For the problem under consideration, it is known [7] that in searching for the optimal

vector X , we must restrict our attention to those x; values which are such that:

X.

=L, +(-1)D,i<j<T, and x4, =X;p = ... =%;=0,ifI;; <0
3)
=011 >0,i=1L,2 T
This means that in searching for the optimal policy we must restrict ourselves to the set of
policies, which order at period i only if the ending stock of period i-1 is negative, and they do
not order if this is positive. The lot size must cover exactly the backlogged demand up to
period i and the demand for an integer number of periods following period i. This is called the

“exact requirements criterion for the x;values”. Any period i is called an order period if x; > 0.

We shall denote by P(z) the set of policies satisfying condition (3). Obviously, x;'s satisfy the

- ! - - r -
relation Z x,=TD, 1<t<T,where t indicates the number of none zero x;’s at any policy from

i=1
P(E) . The realization of the stock level for any such policy is graphically illustrated in Figure
1



Stock

Figure 1. Stock level variation over planning horizon T

We now restrict our attention to those policies, which have exactly » cycles ie. n
setups, which in general have different lengths. Call this set of policies P(n). Obviously, P(n)
P(2). Suppose that any policy from P(n) has #; cycles of length k;, i=1, 2, ..., t, and &k =# k;,

r t
i#. Then we must have, » n,=nand » mk =T, 1<r<T. The cost for any such policy is

=1 i=1

3
nS+Y ng.(A,v,).

i=1

Let Cr(n,h,b) be the optimal cost for the above problem resulting from the application of
the optimal policy with n cycles. Then

r
C(n,b,b) = nS + min > 18 (Av;)
ALY =1

subject to Y m(A;+v,)=T )
i=1
t
S =n 5)
i=1
Ay +V=x;
n, A, v,eZ

The optimal policy at P(z) will then be obtained by C(h,b) = ]% C;(n,h,b) .



3. Structure of the Optimal Policy

T
For any n e N, we set a=[£], ﬁ=[£J=a—l, in case Tmod(n) # 0 and a=—,
n n n

PB=a-1, incase Tmod(n) = 0. Consider the system

ox+py=T

(6)
x+y=n
This has the unique integer solution x =7 —np, y = an—T . Note that in case Tmod(n) =0,

¥y = 0. We shall now prove the following:

Theorem 1. Co(n; h, b) =nS+xéa+J’f_:’ﬁ

where g, = min g,(4, V), and the 1, value minimizing g, (A, v), is the smallest integer
Atv=x
satisfying the inequality:

b k<A, <1+ B k
h+b h+b
Proof. The proof'is given in the Appendix °

Any policy, optimal or not, will have a number of cycles ranging from 1 up to T, ie. a
number belonging to the set Nr, where N ={1, 2, ..., T-1, T}. We shall now construct a

partition of the set Nr in the following way. Let us consider the sets

B, ={n:%$n<£_, neN}, where iel=1{l, 2, .., [%—l, T-1}. Especially for B, we set
I
T T . )
B, =qn: Es HST’ neN¢, so as to include the value n = T. Obviously some B, may be

empty. These sets constitute a partition of Nt, which means that for any » e N there exists

one and only one i € I such that ne B;. For any ne B; we have i<£$i+1. This inequality
n

indicates that for any i €I, the set B,, if not empty, contains at most one » dividing T. If for

any n € B;, Tmod(n) = 0, then obviously P::l =i+l=¢, and F:J =i= f. If there exists one
n n

n € B; such that Tmod(n) = 0, then for this n, r =i+1=qaand we set  =1. Therefore for
n
anyn € B;, a=i+1and g=1i. The solution of (6) becomes:

x=T-ni,y=@{A+1)n-T, foranyi €/,andn € B, (7

Due to the result of Theorem 1 and the above discussion, we have the following:



Theorem 2. The optimal cost for any policy in the set of policies P(n), ne B;, is given by

C;(@, i, b, b) = nS+(T-mi) g, +[(+1n-T]g,, Vn e B; ®

where g, = min g,(4, V), and 1, is the minimizing value of g,(1, v) .
At+v=x

This result is a first step towards having an analytical expression for the total cost
function, with respect to the problem parameters, S, D, h and b. We have included i in the
expression of the total cost function, in order to indicate its strong dependence from it.

Let us now examine the form of the optimal policy in the set of policies with » cycles.
Due to the stationarity of the cost parameters we can take initially the x cycles of type i+, and
then the y cycles of length i. Consequently, the following theorem may be easily proved:
Theorem 3. For any n € B;, the optimal policy with » cycles is determined considering the
following two cases:

Case 1: Tmod(n) = 0
The optimal policy consists of # cycles of length i+1, and is determined if
we order in any cycle (i+1)D
Case 2: Tmod(n) =0
The optimal policy consists of x cycles of length i+1, y cycles of length i, and is determined
if we order in any cycle from the x 's (i+1)D, and
order in any cycle fromthe y 's iD o

This is a very useful and easily applicable result. If for any reason we are restricted to
apply policies with only » cycles, the optimal one may be easily determined, by just finding ie
L, such that n & B; and then substituting these 7 and » into (6) to determine x, the number of
cycles of length i+1, and y the number of cycles of length i.

4. Total Cost Function Properties
An analytical expression for C,(n, i, h, b) with respect to the problem parameters S, D,

h and b, requires similar expressions for the functions g, and g,,. The function g, attains its

minimum at lﬁ:{hb

A 1'-| . This form of 1, makes impossible the determination of an analytical

expression for g,as a function of h, b and i. This difficulty is overcomed by partitioning the

(h,b) plane, into the sets Si(z)={(h,b):z-—lshibi52,z:l, 2, .., i}. An equivalent

expression for these sets, servicing better the needs of this paper is:



Si(z)= {(h,b): (z=-Dh<(i—(z-1))b A (i-2)b<zh, z=1, 2, .., i} iel
It is easy to verify that these sets have the following properties:
a. they constitute a partition of the (h, b) plane w.r.t z
b. there is no inclusion relation between the sets Si(z) and S;.1(z)
c. S(2)NnS_(2)#D for j=z-1, z+1, and empty for all other j values

d. S(z)cS,,(2)uS, (z=1)
In order to obtain a better understanding of the structure of the sets Si(z), a graphical

illustration of the sets Ss(z) forz = 1, ..., 5 is given in Figure 2.
It is obvious that for any (h, b) € Si(z), 4, =z . Therefore g, becomes:

g_i(z)z-g{z(z—l)h +(i—-z)(i—z+l)b)} 9

Based on the properties of the sets Si(z) and the expression in (8), we may obtain an analytical
expression for Cp(n, i, h, b). Obviously this requires finding which of the sets

S.@)NS,(j) j, z=1, ..., i are non empty. It can be easily proved that the only non empty
sets are:

B(z, 1)=S,,,(2)"S{(z)={(h,b): (z-Dh <(i+1-2)b< zh, =1, ..., i}, and

Hy(z, 1)=8,,(2)nS,(z—1) = {(h,b): (+1-2)b<(z-Dh<(i+2-2)b, =2, ..., i+1}.
Taking g,(z) from (9), and substituting into (8) we obtain the following analytic expression
for the function C;(n, i, h, b):

nS + '-S—m(z— Dh + E{ZT— n(i +2)}(i-z+1b (hb) eB.(z 1), z=1...,i
Ci(n, i, b, b)= (10)
nS + -]22(2.—1){2T—n(2i—z+2)}h + ;Dn(i—z+I)(i—z+2)b (hb) eH,(z D), z=2,...,i+1

To the best of our knowledge, we are not aware of any such analytical expression for the total
cost function of this problem.

Now let us consider any set B; containing at least two elements. Based on the expression
(10), the optimal policy in the class of policies P(n), for all n e B;, may be easily determined.
In order to do this, we observe that C;(n, i, h, b) is a linear function with respect to n.
Therefore, we only need to study the difference functionAC; =C.(n) - C(n-1), Vn, n—1€B,.

Using (10), we get the following analytic expression for the difference function AC;:
D L _
S+ 5[2(2—1)h—(1+z)(1—z+1)b] (b) eB(z 1), z=1,....i

A iLhb= (11)
S - —2—[(2-—1)(21—z+2)h—(i—z+1)(i—z+2)b] (b eH(z ), z=2,...,i+1



Figure 2. Graphical representation of the sets Ss(z) forz =1, ..., 5

Theorem 4. The optimal policy in the class of policies P(n), ne B;, for any set B; containing
at least two n values, is the one with n,, cycles, where
® n,, =minB,, for any set of cost parameters S, D, h, and b such that AC; >0
® n,, =maxB;, for any set of cost parameters S, D, h, and b such that AC, <0
e n,, =B, for any set of cost parameters S, D, h, and b such that AC, =0
We shall now examine some special cases, where the overall 7n,, value may be easily
determined.
Let us set f,(z)=S + g[z(z—l)h—(ﬂz)(i —z+1)b], V(h,b) €B,(z, 1). It is easy to

verify that the difference of the function f(z) wrt =z is given by
Af,(2)=D(z—1)h+b) z=2,...,i ,Y h, b € B,(z—1), which is positive and increasing V'z . This

proves that the function f,(z) is convex and increasing w.r.t z.



1% Case: Forz=2, f,(2)=S + §[2h—(i +2)(i—1)b], Y(h,b) € B,(2, 1) . If the values of the

parameters D, S, h and b are such that f{(2)>0, then f;(z)>O0for all z=3,...,i
and AC; > 0. Therefore, 7,, =minB forall D, S, hand b satisfying £,(z)>0.

2" Case: For z = i, f,(i)=S+ %[(f—l)h—zb], V(h,b) B, 1). Iff,(})<0, then

fi(2) <0 forall z=2,...,i and AC; <0. Therefore, 7,

3" Case: If f,(2)<0and £,(i)>0, then there exists some z, such that f,(z,) <Oand

fi(z, +1)=0. In this case n,,

=mexB.

=minB for all z=2,...,z, and R, =0EX B for all
z=2zy+1,...,i V(h,b) €B,(z, 1).
Similar results can be obtained if we examine the function AC; defined on H,(z, 1).

4.1 Example
Analytical cost expressions for any policy with » setups, for the problem with T=12, are given
in Table 1. Let us search for the optimal policy in the class of policies P(n), n € B, and let us

suppose that gshsb. Without loss of generality we assume that D=I1. In this

case AC, = S+h—2b, and using theorem 4, we obtain
W for all S, h, and b values such that S <2b—#, and
" n=4 for all S, h, and b values such that S >2b-h

Therefore, if we are restricted to apply policies with »=5 cycles, since 12mod(5)#0,
this policy will consist of x=2 cycles of length i+7=3, and y=3 cycles of length i=2.
Using theorem 3, the optimal policy is determined if we:
order in any cycle from the x s, (i+1)D=3D, and
order in any cycle from the y 's, iD=2D,

while 4, and A are calculated from the following relations

2b - 2b ) b . ¢
mSRQSI‘I'm :$I<h+b(smce55h<b):>l</12<3:>)b2=2,and

P Sl 1<t (since D<h<b) o<t =3 <A <3 ;=2
h+b h+b h+b 2 2 h+b 2

In case # = b we obtain 1, =1and 1, =2, and we have two equivalent policies. This always
happens at the boundaries of the sets S,(z).

In this example the optimal policy allows for backlogging in the x cycles, while no
backlogging is allowed in the y cycles.



The function Cp(n, i, h, b) defined on the sets B; has two branches designated by the
(h, b) values. Furthermore, its form changes when moving from the set B; to the closest non
empty set B,,, , 1 < j<i+k. This behavior adds difficulties to the analytical determination of
AC(n, i, h, b) because it happens that n € B; and n—1 €B,,, . To cope with this difficulty,
we define, what we have called the jump of the function C.(n, i, h, b) between the sets B;,
B, as follows [5]: let us take the sets B; #J, B; =9, B, #9, i<j<i+k and set
n, =minB.and v, = maxB;. Obviously n, — v, =1. For these sets, we define the function

JB.B.. . )=C.(0,1hb) - C.(v,i+khb),

and we call it the jump of the function C.(n, i, h, b) between the sets B;and B;,, . To derive
an analytical expression for J(B,,B,,, ) we need to know the sets (h, b) on which it is defined.

Based on the properties of the sets Si(z), it can be proved that, the only non empty sets where
the jump of C(n, i, h, b) is defined, are:
B.i(z, DNB;(z-t, ), fort=0,1, ... , k
H, . (z, DNnB;(z-t, ), fort=12, ... , k
B, (z DnH;(z-t, 1), for t=0,1, ... , k-1 (12)
H,(z DnH;(z-t, 1) ,for t=1,2, ... , k
More detailed analysis for these sets is given in the Appendix.
Substituting C;(n, i, h, b) from (10), we obtain the following analytical expression for

the function J(B,,B,,, ):
JB..B...) =S+gz(z—1)h+~]2-)~{——2kl‘+ k(ng —DQRi+k+D)—(i+zi—z+D)}b
when (h,b) €B,,, (z1) NB;(z1)
J(g,&*)=s+l;[az—g —not(Qz—t—l)]h+5D{2T(t—k)—(i +2)i—z+ 1) —ngt(2z—1—t) +(ny —Dk(2i +k+D}b
when (h,b) €B;,, (z)NB;(z-t1) t=1, ... , k-1 (13)
J(B,,B,,,) =S+ —13-{—2T(z 1) +ny(z—1)z-2) +(ny - Y(z-D[2(i +k +1) - z]}h +

. g{ZT(i——z+2)—(i—z+2)(2n0i-i+z—1)-2k(n0 —1)(i—z+1)—k(k+1)(n, —D}b
when (h,b) eH,,, (z]) "B;(z—1,)
J(B,,B,,,) = S+-122{(z— D{2[(n, - DA +k+1) - T]+ 2z} —ngt(2z—t - 1}h +

—g{(i —z+1)[2T-2k(ng — 1) +(i—2+2)] + 2T =209 (>i + 1) +n(-2z+t + ) —(ny — Dk(k + D}b
when (h,b) eH;,, (z) NB;(z-t,]) t=2, ...,k (14)

10



J(B;,B, ;)= S+—2I-)—(z—1){2T-—2n0(i +1)+z}h+
%{—2T(i+k— z+1)+(n, —1)(i+k+z)(i+k-z+1)+n0(i—z+1)(i—z+2)}b
when (h,b) € By, (z1) N H;(z)
J(B,,B,,,) = S+£2)-{2(z— D[T-noG+1)]-2tT+2(z~1) +not{2(i+1-2) +1]}h +
—122{—2T(i+k—z+1)+n0(i—z+t+1)(i—z+t+2)+(n0 -D(i+k+2)(i+k-z+D}b
when (h,b) B, (z)"H;(z-t,]) t=1, ..., k-1 (15)
JB;,B.y )= S-&%{—Tf—(n0 —Dz(z—1)+2(ny —)(z-D(i+k+1)—ny(z—2)2i—z+3)}h+
%{(i —z+1)i-z+2)+23i-z+2)[n, —k(ng — )] - (ny —Dk(k-D}b
when (h,b) eH,,, (z,) nH;(z-11)
JB,.B, +k):S+]ED{(Z—1){2T—n0(2i—z+2)-2’1"+(n0—112{i+k)——z+2]}—t[2’[’—n0(2i ——z+t+2)-=mo(z—1)]}h+
—];{(i —z+1)(i-2z+2) +n,t[2( - z+ D)+ (t+ D] +k(n, - D[2G -z + D)+ (k+ D]}b
when (h,b) eH,,, (zD)"H;(z-t,]) t=2,..,k (16)

For k=1,
S+[E) Z(Z—l)h'%) {—21"+2r10(i +D)-({+1+2)i +2—z)}b (b.b) €B.,,(z)PB(z])
S*? (@-D{-2T+2ne(i+])-2 +z—4}h+—§ (-z+22T-2nyA+D+i~2z+3fb (bb) €b, (2D NB(z-L])
J(B;,B,;)=1 D
S+5 N2+ 42642 T 2mGD)-G+2+Dfp  (ub) eBy(DOH (2D
S+-];—){—2T+2n0(i+l)—2i(z—l) +2(z—5) +4}h+5D (i-z+2(i-z+3)b (hb) eH,,,(z) "H;(z—L])

From the above results, we are now able to prove the following theorem:

Theorem 5. The function C(n, i, h, b), » €N,, i €1, is convex with respect to n.

Proof. The convexity of the function Cr(n, i, h, b) will be established if we prove the
following:
First AB; > J(B;, B, ) Viel (17)

when B; has at least two points,B;,, #&, and B;=(J, i<j<i+k;. This means that any

difference is greater than the jump which may follows immediately.
Second J(B;,Biii,) 2 ABjyy Viel (18)
when B, # &, B,,, has at least two points, and B; =3, i<j<i+k;. This means that any jump is
greater than the difference which may follows immediately. This relation has meaning only if k;
= 1, because as it is proved in [5], any non empty set B; which follows an empty B; set, i <],
has exactly one point.
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Third JB;,Bisi;) > IBisk, > Bivicyaky ) Viel (19)
when B; # &, B, . B, .\, have exactly one point, and B; =&, i<j<i+k;+kz j=i+k,. This
means that any jump must be greater than the jump which may follows immediately. Obviously
the above relations must be valid for any feasible combination of 7, k,, k, .
The approach used to prove this theorem is similar to that used in [5]. The detailed proof is
presented in the Appendix. °
Chand and Sethi [2], have also proved the convexity of the function Cy(n, i, h, b) with
respect to n, for the problem with varying demand and holding cost. However, the approach
used in this paper, leads to the construction of an efficient and easily applicable algorithm to
determine the optimal policy and its corresponding stability regions, for any given set of

problem parameters, which is suitable for practical use.

S. Optimal Policy and Stability Regions

In this section, we present an algorithm to determine the optimal policy for the problem
under consideration and its corresponding stability regions, ie. the set of all problem
parameters values for which an optimal solution remains valid [2, 6]. The convexity of the

function C(m, i, h, b) over N, guarantees the existence of a global minimum which may be
determined by examining the sign of the differences AC (n, i, h, b) and the jumps
J(B;,B,,,). In order to calculate the sign of these functions we only need to compute

S(B;) =AC.(n, i, h, b) =3,

S(B;,Bisk) =JB;,Bisy) = Jisk
To facilitate the presentation we call these functions, the "sign functions" ([5]). The proposed
algorithm is proceeding as follows:

Step 0:  Partition N into the sets B,

Step 1: For any conmsecutive non empty sets B; and B,,,, i<j<i+k, calculate
progressively starting from i=1, their corresponding sign functions &; and j
using relations (11), (13), (14), (15) and (16).

Step 2:  For any given set of problem parameters, check the sign functions, starting from &,

itk ?

until you find the first one, if any exists, which is either negative or equal to zero. If
such a sign function exists, this must be either §; or j;,, . In this case

2.1If 3, <0 then maxB,, ifs; <0
Doy =
B., ifé, =0

1

221f j,y <0 then n,, =minB;
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2.31If ji =0 then n_, ={maxB;,,, minB;}, k>1
241f j.,, =0, k=1, and B,,; has at least two points, then due to the fact that in
this case strict inequality may not hold in (18), which holds only if k=1, we
have to check if &;,, =0. If §,,; =0 then we have to include in the optimal
policy, all integers contained in B,,,. Therefore,
J =0
oy = {Bj;;, minB;}if {B;,; has at least two points
i1 =0
Step 3:  If no sign function exists which is either negative or equal to zero, e.g. if §; >0

and j.,, >0, Viel thenn,, =1

In case that for any given set of problem parameters values there exists more than one

optimal value, the symbol n,, will be also used to represent the set of all these values. The
optimal policy may be straightforward determined based on Theorem 3, using n, previously
calculated using the proposed algorithm. The stability region for the n,, may be determined by

analyzing the sign functions inequalities with the problem parameters S, h, and b, which ensure
that the value associated with the calculated solution is not higher than that for any other

feasible solution [6].

5.1 Example

The sign functions for the problem with T = 12, are presented in Table 1. We now
briefly explain how the proposed algorithm may be easily applied to this problem providing the
optimal policy and stability regions for any set of problem parameters values.

Partitioning N, into the sets B, gives: B, = {12, 11, ..., 6}, B, ={5, 4}, B; ={3},
B, =@, B; ={2}, B, =B, =By =B, =B,, =&, B, ={1}, B}, = . Using relations (11),
(13), (14), (15) and (16) the sign functions may be easily calculated for all non empty sets B;.
If we assume without loss of generality, that D =1, then for any set of S, h, b values with
b<h<2b

1. If§, =S—b<0 then n,, = maxB, ={12}

2. If§, =S-b>0,j, =S-2h+b=3, <0 then n,, = minB, = {6}

W

. If j, =8, =0 then since the set B, has two integers, n,, =1{6, 5, 4}
4, If3,=S-b>0,j, =S—-2h+b=8,>0,and j; =S+h-5b<0, then

13



Using the same approach, the number of setups in the optimal policy may be easily determined
for any set of problem parameters, using the sign functions calculated in Table 1. The set of
problem parameters values, for which the previous relations hold, constitutes the stability

region of the optimal policy.
The optimal policy may be determined as follows:
1. we consider initially the case where n,, is an integer divisor of T. For any set of S,
h, b values with b<h<2b, 8, =S-b>0, j,=S-2h+b=35,>0 and
J3=S+h-5b<0, ng, =4. Therefore, the optimal policy consists of x=4 cycles

of length (i+1)=3 (y=0), and may be determined if we order in any cycle

(i+1)D=3D.
LD DI I ey (since b < h < 2b) =
h+b h+b h+

1<)y <3 =A5=2
Therefore, for any cycle in the optimal policy, backlogging is allowed in the first

period.

2. for any set of S, h, b values with b<h<2b and j,=8,=S-2h+b=0,

Dy =5. Therefore, using the results calculated in the example of section 4.1, the

optimal policy will consist of x=2 cycles of length i+1=3, and y=3 cycles of length

i=2, while it may be determined if we:
order in any cycle from the x s, (i+1)D=3D, and

order in any cycle from the y 's, iD=2D

= ols 2l =b = 2b <Iandl+£—>1(sinceb<h<2b):f2=1
h+b h+b h+b h+b
3b g b b >1anc11+—2b—>2(sinceb<h<2b)=>x‘;zz
h+b h+b h+b h+b

Therefore, for any cycle in the optimal policy backlogging is allowed only in the
first period.
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5. Conclusions

In this paper we have provided new insights into the problem of determining optimal
solutions for the single product lot sizing problem with backlogging. The main contribution of
the paper is the derivation of an analytical expression for the cost of the optimal policy as a
function of all parameters in the model. This expression is utilized in proving the convexity of
the total cost function in the number of cycles, constituting a completely different approach
than that of Chand and Voros [2]. Another valuable contribution is the development of an
efficient algorithm, analogous to that presented in [5], determining the optimal number of
cycles, which enables the derivation of the optimal policy and the construction of stability

regions for any set of problem parameters values.
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APPENDIX

Proof of Theorem 1.
The proof of this theorem will be established in two steps. The technique used here is similar to

that used in Papachristos et al [5]. We shall distinguish the following cases:
Case 1: Tmod (n) =0, and a =—Z. Inthiscasey =an-T = 0,x = na - n(a-1) = n. We must
n

prove that C(n, h,b)=nS+ng, =n(S+g,).
Letus set f(m, A, v,) = imi[l,.(/li —1)h+ v,(v, +1)b]. Now consider the problem

i=1

min f(m;, A;, v;) 20)
mj, Aj, Vi

st Ym(A +v,)=km @D
i=1
Sm=m 22)
i=1
Ay+v;, =x;

with k, m, t fixed positive integers, m; integers (not necessarily positive) summing up to m, and
Ai, vi integer variables. In this problem kmmod(m)=0. To solve it, we shall first solve its
relaxation, letting m,, A;and v, to be real variables, using the Lagrange Multipliers method. If
we set

F=1f(m,, A,, vi)—w[zt:mi(li +vi)—km}—z[zt:mi —m}—iti(?ui +v;, —k;)
i=1 i=1

i=1
take derivatives and equate them to zero we obtain the following equations:

5615= 2mAh-mh-mw—t, =0 (23)
X o mvb+mb-mw—t, =0 24)
avi

F

—— A + km=0 25
ro. ; m; ( Vi) - (25)
aF t

el m= 26
= gl (26)
ot;

.@_:tlzo

Ox;

If we multiply relations (23) and (24) by b and h respectively, we obtain

2m.A hb—mhb—mwb =0
@7
2m,v,hb+ mhb—mwh=0
Summing up these two equations we obtain

16



2hbm (A, +v,)—mw(h+b)=0 (28)
From (28) taking sum over i we obtain
20bY m (A, +v,)—w(h+ b)Y m =0
i=1 i=1
Combing this relation with (21) and (22) we result with

2hbkm—w(h+b)m=0:>w=—-2~£1£k 29
h+b

Replacing w into (28), we obtain the very basic relation A, + v, =k, while replacing w into

(23), and (24), we obtain the minimizing values for A;, vi:

A°,.=l+—b—k, v:=—l+—Lk (30)
2 h+b 2 h+d
From the above relation we have that the A;, v; giving the minimum in (20) are all equal, are
independent from m; and the most important their sum is equal to k. Relations (23), (24),
(25), and (26) are valid for any m, values (even negative) provided that their sum is equal to
m. So, we can take m; = m, m; =0 fori=2,...,t. Therefore, the minimum in (20) is equal to

im,.[/lq(z:; —Dh+vi(v; +Db]= m £,(Z, - D+ vi(v; + 1)b] (31)

i=1

Now consider the function c(A,v) =[7\.(K—l)h+v(v+l)b], with A, v real variables, and
A+v=x. Replacing v=x—A, we obtain o&(1)=(h+b)A —[(h+b)+2kbIA+k*b+kb.
This function is strictly convex w.r.t A, takes its minimum at A}, and it is symmetric around
X,. Therefore, if we search for its minimum in the set of integer) values, we can easily

conclude that the minimizing point is the integer ” closest to 4] . It is easy to see that this is the

integer contained in the interval

b " b
—— k<A L<1+—k 32
h+b h+b (82)

it mkls an integer then there are two A values giving the same minimum, but to avoid

confusion, we shall always keep the smallest one.

The above discussion proves that min f(m;, A;, v;) =mg,, and so Theorem 1 is true in

mj, Aj, Vi
case that n divides T.
T: T
Case 2. Tmod(n) 20, anda =|—|, f=|—|=a-1,x=T-nf, y=an-T.
n n
In this case we claim that

M= min f(mi, ;\'is Vi)___xéuq’ygﬁ

mj, A, vj
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s.t. imi(/li +v,)=T
i=1

t

>'m, =n (33)

i=1
Aj+v; =K,
and m;, A;, v,integers

First we shall prove that xg,+yg,is a lower bound for M, ie. we shall prove that
M=xg,+yg,. Ifthis is not true for all m;, A;, v; satisfying (33), then there will exist at least
one set of m;, A, v;values such that

f(m,A,v,)= zr?z,.[;l,-(i,-— Dh+ fz,-(t_/,-+1)b} <xg,+yg,= f(m,A,v)-vg,<xg,
i=1
(34)
with 2”_’;(/’:;"’ vi)=T, Zri"_lf =n, and mi, A, v;integers.
i=1 i=1

Now let us consider the auxiliary problem
N = min f(mi7 ;Lis Vi)+ mr+1 [;Lt-t—l(;i'lﬂ *l)h * Vr+l(vr+1 +1)b)] (35)

Ais Vis Aens Ve
r P—
st. Ym(A,+v)+m (A, +Vv,)=x(B+)=T
i=1

(36)

3
Ym+m, =x=n,

i=1
and my+; any integer (not necessarily positive)
In this case we have that 7 =x, divides T = x(f +1) and according to Case 1 the minimum is

equal to ng, =xg_ . This minimum is achieved at

a

A =A,V,=(B+1)-A,i=1, .., t+1where A'is obtained from (32) for k=(p+1), and is
valid for any m;, m satisfying the second condition of (36). So we can take
m,, €Z— {0} without affecting the minimum.

If we now takemmi=-yand Am+vei=p, with Am, vin chosen so that

g(im, ;’m) = g, then we have
YA+ v)-yB=T-yB=T~(n-x)B=T-np+xp=x+xB=x(B+1)

ro_
Sm-y=n-y=x
i=1

So, the numbers, mi,Ai,vi, i = 1, .., t, and m,, 4,,,V,,with m,=-y and

1+ +12 7 1+l

5

Ay Vikt = P satisfy constraints (36) of the auxiliary problem. If we substitute them into the
18



objective function (35) we obtain f(m,,4,,v,)—y g, =N =x g, .Combining this and (34), we

obtain x g, > f(m,4,,v,)—y g, >xg, which is a contradiction. Therefore, x g, +ygsisa
lower bound for M.

Now, we shall see that are values of A, vi, m; which satisfy (33) while the
corresponding value of f(m,, A;, v;)is equal to the lower bound. This may be achieved as

follows: take any from the m; and give them values summing up to x. For all these i indexes set
A.+v,=a. Then, to all these 1,’s assign the value 1’ resulting from (32) for k¥ = , and then
set v,=v =a—A . This part of f(m,, 4, v;)will take the value x g, . Do the same for the
remaining m;, ie. give them values summing up to » - x = y. For all these i indexes set
A,+v,=p. Then, to all these A,’s assign the value v resulting from (32) for £ = B, and then
set v,=v = B— 4. This part of f(m,, A, v;)will take the value y g,,.

The above discussion proves Theorem 1 in case that n is not an integer divisor of T.

Proof of Theorem 5

The first condition will be established if we prove the following:
Al. S + %[z(z—- Dh—(@i+z)(i-z+1)b]> S+%z(z—1)h+
D . S
5{—-2kIT+ k,(n, —DQ2i+k, +)-(+2)i-z+DPp  (bb) €B,,, @DNB(z) =

k {=2T +(ny - DQi+k; + D} <0=> (n, ~1)2i+k, +1)-2T <0

This is valid because since n, = minB;, (ny —1) < —T—l = (n, -DE+1)<T,
i+

and (ny —1) €B;,y, = (-1 < =@, -Di+k)<T °

i+k,
A2, S+ -?[(z—1)(z—2)h—(i+z—l)(i—z+2)b]>
S+%{—2T(z— D+ny(z-1)(z-2)+(ny - D(z-D[2(i +k, +]) - z]}h+

%{2T(i—z+2)-(i—z+2)[2n0i —(i-z+1)+k,(n, —D]—k,(n, - D(i—z+1) +k,]}b
(h,b) eH,,, (z)NB,(z-1L) =

i+ky

(e—D{2T+(m — 1z +2(n, ~ D +K, +D)—(, -Dz}h+

{2T(i—z+2)—(i —z42)[2nj —(i—z+)—({+z-D+k(n - D]k, - D[ -z +]) +kl]}b <0=
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(z=D{-2T+(m, = DQ2i + k) +2(ny — DQ2i + by + 1) = 2(my —~ D} +
12— 2+ [T - (n=1)G + )]+ by (1~ D — 2 +2) — k(= D —z + D) — & (m, — 1) }p < 0 =
2z=D[~T+(ny =D+ k) +{2( — 2+ 2)[T - (n— D) + k)] - ky(k, = 1), - D}p < 0=
[((-z+2)b—(z=DRI[T - (n—1)G + k)] - k,(k, - 1)(n, - )b <0
which holds since m, =minB, (n,—1) €B,, =, —1) <_—+%l- =n,-)(i+k)<T,and
4

(i-z+2)b<(z-1h, since (h,b) eH,,y, (z1)NB;(z—-11) °
A3. S- g—[(z—l)(Zi —z+2)h—(i-z+1)({i-z+2)b]>S +g(z-1){2'r-2no(i +1)+z}h+

%)-{—ZT(Hk] —z+ D) +(ny - D +k, +2)(i+k; —z+ D) +ny(i-z+D(i-z+2)}b

(h,b) €B;yy (2D NH;(zD) =

DT -2n(i +D)+z+2(G+) —z}h+
(2T +k —z+ 1)+ — DN +h; +2)F +h —z+ D)+ —z+ Wi —2z+2) —( —z+1Ni—z+2) }p < 0=

(z-D{2T-2G +1)(n, - D}h+

{—21'"(z'+kl —z+ 1)+ (ny - DG —z+ D) + ][I + (K, +2)]+(n, —1)(i—z+l)[(i+2)—z]}b <0=
(z=-D{2T-2G + 1) —D}r+{2T( +k, —z+ D) +i(n, (i —z+ D+ ({ +2)(n, —~ (i —z+1)
~2(ny = 1)(i =z +1) + (m, = D[ik, + (k; +2)(i —z+ D)+ k; (k, +2)}b < 0=

(z—D{2T -2 + 1)(ny — D}a+b{[ - 2T +2( + )(n, = D — 2+ 1) =k 2T + ky (m, — (i —z+ 1) +
+k (n, = D)(i+k, +2)}b< 0=

[h(z=-1D)-b(i-z+DI2T-2(1+D(ng - D]+ bk;[-2T + (ny - DRi+k; + D] < 0=

[h(z-1)-b(Ai-z+k; +D][2T -2+ D(ng - D] - bk (ny - 1)(k; -1) <0
This is valid because since

n, = minB;, (no—-l)<%::>(n0 )i+ <T=2T-2(n, -1)(i+1)>0,
1

h(z-1)-b(i—-z+k, +1) <0, since (h,b) €B,,, (z)) " H;(z,]),
while —bk,(n, —1)(k, —1) is obviously negative °

A4. Incasethat (h,b) €eH,, (z)NH(z-1]),
S—1—2)-[(2-2)(2i—z+3)h—(i—z+2)(i—z+3)b]>

S +%{—2T— (mg -Dz(z-1)+2(ny - D(z-1)i+k, +1)—nog(z-2)2i~z+3)}h+

—12)—{(i—z+1)(i—z+2)+2[n0 —ky(ng - DI(i-2+2) — (no - Dk, (k; ~ Db =

S+%{—2T—(ng ~Dz(z—1)+2(ng —D(z-D(i+k; + D) —ny(z—2)(2i—z+3)}h +

%—{(i—z+1)(i—z+2)+2[n0—kl(no—1)](i—z+2)—(n0—1)k1(k1—-l)}b<0 =N
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{27~ (1, ~Dz(z—1) +2(n, ~ 1)z =D + &, + D = (1, — 1)z — 2)(2i - 2+ 3) }h +
[(—z+1)i—z+2)— (=2 +2)(i —2+3) +2[n, — Ky, — DI — 2 +2) = (1, ~ Dy (k, ~ D} < 0=
{27~ (n, - Dz(z—1) +2(n, ~ 1)z =D + &, + D = (1, — (2 —2)(2i —z+ 3} +

{20 -z +2) +2n,(i =2 +2) = 2k, (n, = )i — 2+2) — (n, — Dk, (k, - D} < 0=

{=2T = (n, - D[z(z— 1) +(z =[2G + 1) = (2= D]+ 2(n, = )z = )i + &, + D} +

[2(my = 1)(i -z +2)(1- k) — (1, — Dky(k, — D} < 0=

(2T +2(m, ~ 1)z~ 1)i +k) 2, — Iz —2) + DY+ {200, — i —z+2)(1-k) ~ (1~ Dk (k, ~ D }p <0=
2T+ 20, ~D[(z— 1 +h) (22X + DIPa+{20m, — 1) —z+2) 1~ k) — (% — Dk (K ~ D }p < 0=

[-2T +2(m, — 1) + 1) +2(m, — D)z =1k, — D}k —{2(n, — 1) —z+2)(ky = 1) + (1, — Dy (k, ~ Db < 0=
[2T +2(r, = 1) + D+ 2(n, — 1)(k, = D[(z— Dh— (i —z+2)b] —b(n, — Dk (K, —1) <0

This is valid because since n, = minB;, (ny —1) <i—-}:—1:>(n0 -D(i+1)-T<0 and

h(z—1)-b(i—z+2) <0, since (h,b) eH;,; (zD) N H;(z-11) °

The second condition will be established if we prove the following:
B1.

S+gz(z—1)h+g {2T+2(n, - DG+ D -G +2)[i—2z+D}b ZS-I-IE) [2(z—Dh—(i+1+2i+2-2)b]

(hb) €B,,,(z)NB(z]) =
2T+2(n, - )i+D)-(+2)i-z+)+([i+1+2)(i+2-2)20=>

2T+2(ny =i+ -({+2)(i-z+D+({+2(-z+D)+2(1+1) 20=>-2T+2n,(i+1) =0

This is valid because since n, = minB;, —_-I—léno =n,(i+1)-T=0 o
i
B2.
S+—]2?~(z— 2T +n,(z-2)+2(G +2)(ny —1) — 2(n, - Dih+

_]22{2TC1—Z+2)—(i—z+2)(2n0i—i +z-1)=2(ny - Di-z+2Wb>

S—g{(z—l)[2(i+1)—z+21h—(i—z+2)(i—z+3)b} (bb) eH.,,(z)NB,(z-L]) =
(z—D{-2T +ny(z-2) +2(i+ 2)(n, — D= 2(n, — D +2(i + D —z+ 2} +
[2T(-z+2)—(i-z+2)[2ni - (i —z+ 1) +2(n,~ D - (i-z+3)}b2 0=

(2= 12T+ 2n, (i + DY+ 2T - 2 +2) — (=2 + 22 + 2(n, - 1) = 2(i —z+2)}b 2 0=
(z—D{2T+2n,(i + D} +{[2T - 2m, (i + D] -2+ 2) + 2(i — z+2)(i —z +3)}p 2 0=

(2= D)[=2T + 21, (i + D) —[-2T +2m, (i + D) — 2z +2)b+2(i — 2+ 2)(i—2z+3)b > 0=
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[(z=Dh—(i—z+2)b][ 2T +2n,(i + D] +2(F —z+2)(i—2+3)b=0
This is valid because since n, = minB,, _—TISnO =2n,(i+1)-2T=0, and
i+

(b,b) eH.,,(z]) "B, (z—L]), (z—-Dh—(i-z+2)b>0 .
B3.

S+g(z—1){2T—2n0(i+1)+z}h+§(i—z+2){—2T+2n0(i+1)—(i+z+1)}b >

S+g{z(z—1)h—(i+z+1)(i—z+2)b} (b,b) €B.,, (@) NH,z) =
(z—1{2T 20 i+ Dh— (- 2+ 2)2T 20, (i + D)} 2 0= {(z— Dh— (i —z+2)bY2T—2n,(i+1)} 20
This is valid because since n, = minB;, :T1 <ny =2T—2n,(i+1)<0,
and since (b,b) €B,,,(z) "H;(z1), (z-Dh—(i-z+2)b<0 .
B4.

S+ %{-ZT —(ny —Dz(z- D) +2(ny —(z-D(i+2) —ny(z—2)(2i—z+3)}h +

—]22{(i—z+l)(i—z+2)+2(i—z+2)}b28-~§{(z—1)[2(i+1)-z+2]h—(i—z+2)(i—z+3)b}
(bb) eH,,,zDNH(z-L) =
{-2T-nyz(z-1) +2n,(z- 1)(i+2) - ny(z-2)(2i-z+3)}h 2 0=
{-2T-n,z(z-1) +2n,(z—- 1)(i+2) - 2ny(z-2)(i+ 1) +ny(z—1)(z-2)}h> 0=
{2T+2ny(z-D(E+1) -2ny(z-2)(i+D}h=0=>
{2T+2n,(i+Dl(z-) - (z=2)]}h20=[2T +2n,(i+1)]h = 0
This is valid because since n, = minB;, % <n, =2n,(i+1)-2T=0 °

Before proving the third condition, it can be easily shown using relations (11) through
(14) that the function J(Bi, . By, ., ) is defined as follows:

J(I.?,-+,q,}.?,-+,q+k2)=S+§z(z—1)h+§{—2k2T+kz(no ~D[2i+k)+(ky + D] - (i +k +2)i+k —z +1)}b
when (hs b) E'I)’i+lo.:,+l‘¢:}_ (Z,].)('\ B:'+}'r1 (Z,l)

I(Biss;sBiip sn, ) =S + %(z ~1){-2T+2(n, -1)(i+k, +k, +1)=2n, + z]}h +
g{(—2k2T+[21"—2no(i+kl)+(i+kl +k, —z+ D)) +k; +k, —z+2) —ngk, (k, —2z+3)}b

when (h,b) eH,, ., (2D NB,, (z-1D)
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J(B,.,rkl,&m%)=S+§(z-—1){2T—2no(i+kl +1)+z}h+

—2‘12{[-21"+2n(,(i+kl)+n0 —(i+k +k,+ )i+ K+ K, —z+ 1)+ nky(k, — Db
when (h,b) € B, ., ()N H,.,. (2])

KB B +,,2)=S+§{—2T-m(z—l)(z—z)—mz-z)(mq 1)+ 2, ~IXz=1)G +K +k, +1)—2(z 1)~ D+

—‘3{(1'+k, +hy —z+ 1+ +hy—z+2) - ~D}b
when () € Hy o (ZDNH, . (z-LD)
Therefore, the third condition will be established if we prove the following:
Cl1.
D D . . :

S+Ez(z—l)h+5{—2k1T+k1(nD —D)Qi+k, +D—(i+z(i-z+D}b>

S+-gz(z—1)h+2{—2k2T+k2(nﬂ — D26 +k) +(k, +D] -G +k, +2Xi+k, —z+D}b

when (1, b) €(Byuy, (21) NBy(Z) N(Biug i, BD N Biayg (D) = Biigi (2D NByy (D NBy(zD) =

2k, —k, )T+, (n —IX2i +k, +1)—k, (1 — 1k, +1) =2k, (0, =1 +k,) +k,(+2) +k,(i—z+) +k] 20=
2k, —k, YT +k;ng (21 +k, +1) =k, (0 — Xk, +1) 2k, (0, )i +k,) +(2ik, +k, +k}) 20=>

(for a formal proof see [5]) °
C2.

S+§{—2T(z— 1) +n,(z—1D)(z=2)+(m, —D(z=D[2G + &, +1) —z]}h +
g{ZT(i—z+2)—(i—z+2)(2noi—i+z—1)—2kl(n0 —Di-z+ D) -k (k+D)(n,—D}b =
S+-§(z— D{-2T+2(n, — 1) + k, + k) + 2= 2]} +

-123{(—21‘:214 [2T = 2ny(i + k) + G + K, + ey — 2+ D)+, + Ky —2+2) — ok, (e, — 22+ 3)}b
when (,6) €(H,,, (z.) N B,(z= 1)) " (Hyygus, (2D N By, (2= L1))
A=h(z-D{2(n, — DI+ k& + 1) =G + &y + k)] +1y(z = 2) — 2(m, - D-(z-2)}=
h(z=1){(n, = (2 —2) — z(n, — 1) — 2(n, — D)(k, = D} = =2h(z = 1)(n, — D&,
B=D21[(i—2z+2)+(ky ~1Vi+h; +h, ~z+ D] -1 26 —2z+2) 2+ Yi +hy +he —z+ 2+
(i—z+1i—2+2)—(i+h +k, —z+1Ni+k +h, —z+2) — k(D —z4+2)+(i—z+ D)+ ]k (K, ~2z+3)lb=
DRI+, ~ 1)k +) + oy — 2+ D]+ 2 [+ X + ) + (=24 D) - (hy + )26~z + D+ +, +1]-
ki, — D2 —z+ D) +k, ++ndey (k, —22+3) Jp=
D211+, — Yk +ky) + ke (—z+ D]+ [ 20+ Xk +hy) + 2k (i —2+2) ~ 2k (i—z+ D)~k (ly + D+ (R, +1)
k(2= D]~ + R[22+ D) +hy + iy + TR [2i—z+ D) + K, + o=
LI+, — 1)K, +hey) + Ky (i — 2+ D]+ [ 26k +Fy) + 2k (R +)+ 2k — Ky (ly + D)+ Koy (K, +1) =25 (2= D))~
k26 —z+ D) +k +k, + 1+ k[26 —z+ 1)+ +1-2G—z+ D)k —k, —1}b=
[T+ (K, = 1)(k, + k) + Koy (G — 2+ 1)+ o[ 20(k, + ky) + Ky (e +1) = 2k,2 + 20k, + Ky ) + 2K, (K + Ky) =
k(k, +D]-k,[2G + K, —z+ 1) +k, +1]}b =
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2T+ (k, ~ 10k +hy) + Ry =2+ D]+ (5, ~ DIk (K, + 1)~ 2Kz + 2D, + 20k, + 2k, +1ke 21+, + D)o =
DT+ (k, — )y + ) + k(= 2+ D]+ (1 — DR, [2(+k +2—2) +k, — 1}b =
2T+ (k, = D)k, + k) + Ky (= 2+ D]+ (7 — Dy (ky = 1) +2(my = Dk, (i + K, +2 - 2) 1B
Therefore, A+ B =2(n, - Dk, {(i +k, +2-2)b—h(z-D}+
D201+ (ky = 1)(k, + ko) + ey (i = 2+ D]+ (1, — Dy (k, — D62 0
since (,5) €(H,y, (2) N B/(z= L)) N (Hipp,r, (1) N By, (- LD)) .
C3.

S+—]2)-(z-1){2T—2n0(i+1)+z}h+

%{-—2T(i+k] —z+1)+(n, - D(i+k, +2(i+k, —z+)+ny(i—-z+1)i-z+2)}b>

S+%)—(z— D{2T-2n,(i+k, +D+zth+

12)—{[—2T+2n0(i +k)+n,—(+k, +k, +2)](+k, +k, —z+1)+nok, (k, - D}b

when (h,b) €(By,y, (21) MH;(z) N (Biuyy i () M Hyyy (1)
2ngk(z— Dh+{-2T[( +k, —z+1)— (i + k, + ky —z+ 1)) —no[2G + &) +11G + &, +k, —z+ 1) +
(i+k +k,+2)i+k +k,—z+ ) +(m, - i +k +2)i+k —z+ D) +n(i -z +1)i -z +2) —nk, (k, —1)}b =
2k (z—Dh+ 2, T-n,[2(i+ k) +1-(—z+2) =+ k, + 2)]( —z+1) —ny(k, + k,)[2(i + k) + 1]+
(n, =Dk, +k +2)—(+k +2)i—z+ 1) —nk,(k, —1)}b=
2k (z—Dh+ 2k, T—ny (b =i —z+ D) —no(ky + B )20 + k) + 1]+ — Dk + Ky +2) +(ky + B i+ +2)+
k(i —z+1)+ky(k + k) —nokr (b, —D}b=
2nky(z—Dh+2k,T—nk [(i—z+ D)+ 2(i+ k) +1-(i+k +2)]+n,(i—z+ ) -k (i +k, +2) -
ke, [2G + k) +1+ky = 1]+ k(i + k +2)+ k, Qi+ 14k, +2k))}b =
22—+ QI T2 — 2+ )~k 4y =2+ D) =2 G-+) G + 2D )+ (hy +1)}b =
2nyk,(z—1)h+ {J"c2 [2T -2(n, — )i + k)] —n, [ —z+ D2k, - 1) + kl2 + k.f 1+ &, (k, + l)}b =

2nok {(z—Dh— (i~ 2+ DB} +{k,[2T - 2(m, — i + k) + [ —z+ D)=k K T+ by (B, +1)}b =
2nde {(z—Dh— (i — 2+ &, + Db} +{ e, [2T = 2(m) = )G + I )]+ 1y — z+1) 15k — (1, — D5 +K, b 20

sincen, = minB;, ny -1€B;,;,, =>n,-1< Tk =2T-2(n, -D(i+k,;)>0,

Ty
(h,b) (B, ) N Hi(2D) A (Bigyary @D N Hiyg (z) = (z—Dh-(i-z+k; + Db 20,
while ny(i—z+1)+noki - (ng — 1)k2 +k, is obviously positive o

C4.
S+ g{—ZT— (ng -Dz(z-1)+2(ny —D(z-D(i+k; +1)—ny(z-2)(2i—z+ 3)}h -

%{(i-z+1)(i—z+2) +2(i-z+2)[ng —k;(ng - D] - (ny — Dk, (k; - D}b =

S+—?{-2T—n0(z-—1)(z—-2)—2n0(z—2)(i+k1 +)+2(ny —D(z-D(+k, +k, +)—z(z—1)(n, -D}h+

g{(nkl +k, —z+ 1) +k, +k, —2+2) —ngk, (ky —1)}b

when (h,b) €(H,.y, () NH, (2= 1)) A\ (Hiyy i, (D N Hiy (2-1D)
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A= fny(z=1)(z—2)+ 2, ~ Dz = 1) + by + 1) = 1y(z = 2)(2i — z+3) + 2my (2= 2)(i + Ky +1) -
2y~ )z =)+, +k, + 1)} =
(1, —T)z-D[(z=2)+2G +k +1) =2 +k + &, + D]+ (2 - D(z-2) - ny(z—2)QRi —z +3) +
2ny(z=2)(i+ Kk, +1)}h=
{(no ~D(z-D[(z-2) -2k, ]+ (z-1)0(z-2) +n,(z=2)[2(i + k, + 1) - (2i —z + 3=
{(n,—1)(z-DI(z—2) -2k, ]+ (z=D(z=2) + 1o (z—2)[(z =D + 2k Jth=
{2n,(z—1)(z—2) -2k, (n, - 1)(z — 1) + 2n.k; (z - 2)}h
B= {=(k, + k)G =z + 1)+ (= z+2) + (K, + k)] + 2o i — 2+ 2) = 2K,y — i — 2+ 2) = (1o — Dy (K, = D) +
nok, (k, —1)}b = :
(=(k, + k)20 -2+, +E, +1) =k, + K, — D]+ 20 + 5 — 2+2) = 20k (i = 2+ 2) + 1ok (ky — D =
(n, =Dk (k, - D}b=
(o)l + =20k +h X —2-+ K+, + D)+ 2, kX —2+2)~2ngk (—7+2) + ok (b~ D=
(n,— Dk~ D=
e+l +hy 1)~y =7+ + + D+ 20 [~z +2)~(—z+hy +y + D} 2 —2+2)
i —z+2)+nf by =D~y ~ Dl s Do =
{(k, +k, Xk, +k, - -2k, (i—z+k, +k, +D) -2k, (k; +k, 1) +2n,(i—z+2)-2n4k,(i—z+2)+

gk, (k, — 1)~ (0 — Dk, - Db= _
{(k, -k )k, +k, —D—2k, (i—z+k; +k, +D+2ny(—z+2)—2ngk; (i—z+2)+

ngk, (k, =) —(ny — Dk, (k; —D}b
Therefore, A+ B = 2n0k1{(z -2)h—(i-z+ 2)b} +2k, {(z— Dh—(i—z+k +k,+ l)b} +

{2ny(z— 1)z —2) - 2kny(z— 1)} +
[k, = ke Yk, + = 1) + 27 (i — 2+2) + 1hey (b, = 1) = (g — D (B, = D5 2 0

since (b, b) €(H,,y, (z1) N H;(z— L) (Higar, @D N Hiy, (2= D)=
(z—2)h—(i-z+2)b>0and (z—)h—-(i-z+k, +k, +)b =0,

while the remaining part of the above relation is obviously positive

Determining the domain of the jump of the function C.(n, i, h, b)

B,-(z,l)={(z—l)hs(i+1—z)z;»5zh}={’”-ZbShS z+1_lzb} ol
Z 7 —

1.
Bf‘+k(z!1)={(Z—l)hﬁ(f+k+1—z)652h}={ﬁﬂ__zbshgﬂiﬂb}

z z—1

The intersection B, ,(z,1)M B(z,1) is valid if

itktloz f+l-z o i4l-z i+k+l=2 e ok <(i+k+D)and
z-1 z z-1 z

it is defined as follows: B, (z,))" B(z))={(i+k+1-2)b<zh, (z-Dh<(i+1-2)b} o
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B,-(z—l,l)={(z—2)hs(f+2—z)b.<_(z—1)h}:{ =

2

b<h<

i+2—lz f+2—'-2b}

z—

HM(Z,I)={(i+k+1—z)b£(z—1)hS(z‘+k+2-z)b}={——bgh_~

26

ivk+1-z <i+k+2_zb}
z—1 z—1
i+k+1-z i+2-z

The intersection H,,,(z,1)N B,(z—1,1) is valid if 1 < 5 = k(z-2)<i,
z— z—

while it is defined as follows:

. i+2—z<i+k+1—z <i+2—z <i+k+2—z

o if =(i+2-2)<k(z-2)<i then

z-1 = z-1 =~ z=-2 = z-1
H, (z)"B(z-1L)={(i+k+1-2)b<(z—Dh, (z—2)h<(i+2-z)b}

) 4 _ . k _ H o T =
. lf1+2 z i+ +1 z$1+k+2 zsz+2 z=>k(z—2)s(i+2—2)theﬂ
z—1 =1 z-1 z-2

H  (z)NB(z-1)={(i+k+1-2)b<(z-Dh<(i+k+2-2)b} o

b<h<

z-1 z—

H,.(z,l)={(i+1—z)bs(z—1)hs(i+2_z)b}z{f+1—z i+2—zb}

itrk+tl—z z‘+k+1~zb}
s z—1

B (z)={(z-Dh<(i+k+1-2)b gh}:{———bshs

The intersection B, ,(z,1)N H,(z,1) is valid if itktl=z < z+2;z =k(z-1)<(@+1),
z

while it is defined as follows:

i+1—zSi+k+1—z S1'+2—z_<.i+k+1—z
z—1 z z—1 z-1

o if =i+l-z<k(z-1)<i+1 then

B (zD) N H(z)={(i+k+1-2)b<zh, (z-Dh<(i+2-z)b}

i+k+1-z " i+l1—z Si+2—z si+k+1—z
z z—1 z-1 z—1

B.,(z)NH(z)={({i+1-2)b<(z-1)h<(i+2- z)b} o

e if

= k(z-1)<i+1-z then

b<h<

Hi(z—lal)={(i+z—2)bS(Z—Z)hS(i+3—z)h}={i"Z'Z;2 i+3;zb}
- —

Pk 4=z i+k+2—zb}

Hi+k(z,1)={(i+k+1—z)bs(z—l)hs(i+k+2—z)b}z{—-——1———bshs 1
T~ Z—

The intersection H,

H_k(Z,l)ﬁ Hi(Z _191) is valid if
Prkt2oz, D427 g 32 A2 e D) s Kz-2)S(42-1),
z~1 z=2 z-2 z—1

while it is defined as follows:



o if

o if

i+k+l1—z i+2—z i+k+2—-z i+3-z
< < <
z-1 z-2 z-1 z=-2

H.,(zD)NH(z-1))={(i+2-2)b<(z—-2)h, (z-Dh<(i+k+2-z)b}

=i+2-z<k(z-2)<i then

f+2—zSi+k+1—zgi+3—z$i+k+2—z
z-2 z-1 z=2 z—1

H.(zD)AH(z-11)={(i+k+1-2)b < (z—Dh, (z=2)h < (i+3-z)b}

=i<k(z-2)<i+1-z then
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